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What is Social Media?

� According to Wikipedia (18/8/2014):
Social media is the social interaction among people in which they
create, share or exchange information and ideas in virtual commu-
nities and networks. Andreas Kaplan and Michael Haenlein define
social media as “a group of Internet-based applications that build
on the ideological and technological foundations of Web 2.0, and
that allow the creation and exchange of user-generated content.”

Warning
The examples and perspective in this article deal primarily with
the United States and do not represent a worldwide view of the
subject.
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Popular Forms of Social Media

Social Networking sites
Facebook, Google+, ...

Source(s): http://www.iclarified.com/images/news/33952/140980/140980-1280.jpg

http://www.iclarified.com/images/news/33952/140980/140980-1280.jpg
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Popular Forms of Social Media

Content sharing sites
Instagram, Foursquare, Flickr, YouTube, ...

Source(s): http://sanziro.com/2011/05/app-of-the-week-instagram.html

http://sanziro.com/2011/05/app-of-the-week-instagram.html
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Popular Forms of Social Media

Blogs
Gizmodo, Mashable, Boing Boing, ...
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Popular Forms of Social Media

Micro-blogs
Twitter, Weibo, Tumblr, ...

Source(s): http://itunes.apple.com/us/app/twitter/

http://itunes.apple.com/us/app/twitter/
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Popular Forms of Social Media

Web user forums
StackOverflow, CNET forums, Apple Support, ...

Source(s): http://tinyurl.com/pwk8p9j

http://tinyurl.com/pwk8p9j
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Popular Forms of Social Media

Wikis
Wikipedia, Wiktionary, ...

Source(s): http://en.wikipedia.org/wiki/Social_media

http://en.wikipedia.org/wiki/Social_media
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Common Features of Social Media

� Posts

� Social network (explicit or implicit)

� Cross-post/user linking

� Social tagging

� Comments

� Likes/favourites/starring/voting/rating/...

� Author information, and linking to user profile features

� Streaming data

� Aggregation/ease of access

� Volume
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@eltimster so what? #yawn

� OK, OK, but what’s all this got to do with semantics?

� Basic question that I am asking in this talk:

Semantic Analysis of Social Media

— Why Care?

� Answer the question across three dimensions of social media
analysis:

1 content-based semantic analysis
2 user-based semantic analysis
3 network-based semantic analysis
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Content-based Semantic Analysis

� Content-based analysis = base analysis on the content of
social media posts

... focusing primarily on the textual
content, but don’t forget the links

� Superficial, hard-nosed answer as to why we should care
about content-based semantic analysis:

BECAUSE OTHERS CARE!

If we can put high-utility semantic data in the hands of
social media analysts, people will use it (much to learn from
the “outreach” successes of Sentiment Analysis et al.)
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Semantic Analysis at Scale I

Source(s): http://www.domo.com/learn/data-never-sleeps-2

http://www.domo.com/learn/data-never-sleeps-2
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Semantic Analysis at Scale II

� The good news: social media content is generally
plentiful, if you aren’t picky about the data

⇒ great news for unsupervised models; potential challenges
for scalability

� The mixed news:
� the data requires quite a bit of “taming”, in terms of:

� the mix of language and topic, with heavy skewing toward
particular languages and topics (@justinbieber I’m tired
write to you! But NEVER SAY NEVER! PT 18)

� orthography, although lexical normalisation helps out quite
a bit [Baldwin et al., 2013]

� documents are generally short (= limited textual context)
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Pre-tagged Training Data Galore #kinda

� Social media data is rife with user-provided (silver-standard)
metalinguistic labels [Davidov et al., 2010a,b]:

� hashtagging of sarcasm/irony and sentiment:

(1) So glad to hear the police have everything under control in
#Frerguson #sarcasm

(2) Its been 3 days you guys sent us a broken laptop. No
communication from your team . Feeling cheated. #FAIL

� comments on images/videos (e.g. Very atmospheric)
� free-text metadata associated with images/videos (e.g.

Dublin’s cityscape seen over the river Liffey ...)
� social tagging of documents/images (e.g. Ireland)
� geotagging of documents/images [Eisenstein et al., 2010,

Wing and Baldridge, 2011, Han et al., 2014, Doyle, 2014]
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Example Task: Detection/Analysis of

Localisms I

� Task outline: analyse the geographical spread of different
terms based on geotagged data, and identify terms which
have “low-entropy” localised geographic distributions

� Approach (v1): for a pre-identified expression, analyse the
geographical spread of use [Doyle, 2014]

� Approach (v2): use feature selection methods to identify
terms with a highly-localised geospread, based on 2D spatial
analysis or discretisation of the data (e.g. into states or
cities) [Cook et al., to appeara]
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Example Task: Detection/Analysis of

Localisms II
� Example: the term buku, identified using information gain

ratio ratio over a set of North American tweets:

Source(s): Cook et al. [to appeara]
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Words of Caution on Pre-tagged Training Data

� Hashtags can be ambiguous/shift in meaning over time
(e.g. #acl2014)

� Popular hashtags have a tendency to be spammed, and
become less discriminating

� Not all possible metalinguistic labels are equally used, for
good pragmatic reasons (cf. #english,
#bikemadmiddleagedaustralian)

� Comments and metadata descriptions vary a lot in content,
quality and relevance (not all comments are equal)

� Comments/social tags are notoriously patchy (not all posts
are equally commented on/tagged)
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Robustness and Semantic Parsing

� (Genuine) robustness has long been beyond the reach of
NLP, but there is no data source better than social media
text to test the robustness of an NLP tool:

� the content is all over the place, documents are generally
short, spelling and syntax are often “untamed”, ...

� I would suggest that certain NLP tasks such as constituency
parsing over social media text are a lost cause (Baldwin
et al. [2013], although see Kong et al. [to appear] on
dependency parsing Twitter), but that it’s a natural target
for semantic parsing:

(3) It’s getting late the babe sleep guess I’ll ko now kawaii ne!
#fb

get_state’(late’())
sleep’(arg1=baby’,trel=now,tense=pres)
sleep’(arg1=1p_sing,trel=now,tense=future)
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Diachronic Analysis

� One of the benefits of streaming data is that it is
timestamped, supporting diachronic analysis of the content,
and opening up research on topics such as:

� the detection of novel word senses [Cook et al., to appearb]
� sense drift [Cook et al., 2013]
� what senses “stick” (e.g. swag vs. clamp)
� the rise (and fall) and use patterns of multiword

expressions (MWEs) (e.g. chick flick vs. myspace terms)
� (in combination with geotags) the geographical dispersal

(over time) of words/senses/MWEs (e.g. selfie)
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Trend Analysis

� Related to this, it is also possible to explore novel (lexical)
semantic tasks with a dimension of time such as:

� event/first story detection [Petrović et al., 2010]
� trend/change-point analysis [Lau et al., 2012]

� Much of the work in this space has assumed a predefined
event type, or done some variant of lexical “burstiness”
analysis

� The semantics community can potentially offer much in
terms of:

� what is an event?
� how should an event be represented/presented to a user?
� how to represent/process uncertain/incomplete event

information?
� sense-sensitisation of burstiness/trend analysis
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Content-based Semantic Analysis: Summary

� Content-based semantic analysis of social media – why
care?

� If we can generate high-utility semantic information, users
will come

� Possibilities/challenges for semantic analysis at scale ...
but need to tame the data

� Availability of silver-standard user/device-tagged data, e.g.
hashtags, comments, free-text metadata, social tags,
geotags

� It’s a great target for semantic parsing (and arguably
terrible target for conventional syntactic parsing)

� There are possibilities to carry out diachronic analysis of
words/MWEs

� There are opportunities to carry out trend analysis
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User Information I

� All I have said to now has ignored the fact that:

(a) a myriad of people are posting the content

(b) we generally know at least who the poster was, and in
many cases also:

� their name and “identity”
� user-declared demographic/profiling information
� what other posts they have made to the same site
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User Information II

� Simply knowing the identity of the user opens up
possibilities for user priors, e.g.:

� analysis of per/cross-user sense usage patterns
� user-biased semantic parsing, trend analysis, etc.

� In additionally knowing something about the messages
associated with users (e.g. geotags) or the user themself
(e.g. their technical proficiency), we can perform:

� user profiling (e.g. user geolocation, language
identification, user ethnicity, ...) [Bergsma et al., 2013]

� message/question routing
� user- and location-biased semantic parsing, trend analysis,

etc.
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Example Task 1: User-level Lexical Priors

Conventional text

� One sense per discourse [Gale et al., 1992]

� First-sense heuristic [McCarthy et al., 2004]

Twitter

� One sense per tweeter?

� documents are too small to consider applying one sense per
discourse, but we can possibly address the lack of context
with user-level sense priors

� First-sense heuristic?

� shown to change substantially across domains, so not clear
that it will work as well over Twitter
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User-level Lexical Priors: Datasets

� Sense inventory: Macmillan Dictionary

� Target lemmas: 20 nouns (≥ 3 senses)

� 4 datasets: {Twitter,ukWaC} × {rand,user}
� ukWaC: more-conventional (web) text
� rand: random sample of usages from Twitter/ukWaC
� user: 5 usages of a given word from each user

(Twitter) or document (ukWaC)

� 2000 items each: 100 usages of each noun

Source(s): Gella et al. [2014]
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User-level Lexical Priors: Analysis

� Average proportion of users/documents using a noun in the
same sense across all 5 usages

� Twitteruser: 65%
� ukWaCdoc: 63%

� One sense per tweeter heuristic is as strong as one sense per
discourse

Source(s): Gella et al. [2014]
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Analysis: Pairwise Agreement

Partition Agreement (%)
Gale et al. (1992) document 94.4
Twitteruser user 95.4
Twitteruser — 62.9
Twitterrand — 55.1
ukWaCdoc document 94.2
ukWaCdoc — 65.9
ukWaCrand — 60.2

Source(s): Gella et al. [2014]



Semantic Analysis of Social Media *SEM (24/8/2014)

Analysis: Pairwise Agreement

Partition Agreement (%)
Gale et al. (1992) document 94.4
Twitteruser user 95.4
Twitteruser — 62.9
Twitterrand — 55.1
ukWaCdoc document 94.2
ukWaCdoc — 65.9
ukWaCrand — 60.2

Source(s): Gella et al. [2014]



Semantic Analysis of Social Media *SEM (24/8/2014)

Analysis: Pairwise Agreement

Partition Agreement (%)
Gale et al. (1992) document 94.4
Twitteruser user 95.4
Twitteruser — 62.9
Twitterrand — 55.1
ukWaCdoc document 94.2
ukWaCdoc — 65.9
ukWaCrand — 60.2

Source(s): Gella et al. [2014]



Semantic Analysis of Social Media *SEM (24/8/2014)

Analysis: Pairwise Agreement

Partition Agreement (%)
Gale et al. (1992) document 94.4
Twitteruser user 95.4
Twitteruser — 62.9
Twitterrand — 55.1
ukWaCdoc document 94.2
ukWaCdoc — 65.9
ukWaCrand — 60.2

Source(s): Gella et al. [2014]



Semantic Analysis of Social Media *SEM (24/8/2014)

User-level Lexical Priors: Other Analysis

� Comparing Twitterrand and ukWaCrand:

� First-sense tagging is less accurate in Twitter data
� Twitterrand: 45.3%
� ukWaCrand: 55.4%

� Sense distributions are less skewed on Twitter
� sense entropy lower for ukWaCrand for 15 nouns

� 8/20 nouns have different first senses

� More “Other” senses in Twitter data
� Twitterrand: 12.3%
� ukWaCrand: 6.6%

Source(s): Gella et al. [2014]
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Example Task 2: User Geolocation

� What is the most likely geolocation for a message/user?

Example
� Posts:

� Currently seated in the drunk people section.
#sober

� RT SFGiants: Sergio Romo’s scoreless steak is
snapped at 21.2 innings as he allows 1 run in the
8th. #SFGiants still hold 2-1 lead.

� kettle corn guy featured on sportscenter!!
#Sfgiants

� User location: ?
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Example Task 2: User Geolocation

� What is the most likely geolocation for a message/user?

Example
� Posts:

� Currently seated in the drunk people section.
#sober

� RT SFGiants: Sergio Romo’s scoreless steak is
snapped at 21.2 innings as he allows 1 run in the
8th. #SFGiants still hold 2-1 lead.

� kettle corn guy featured on sportscenter!!
#Sfgiants

� User location: Fresno, CA
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User Geolocation: Approach

� Construct training/test data by identifying users with a
certain volume of geotagged tweets, centred around a
particular locale

� Approach the task via text classification over the
meta-document that is the combination of (geotagged)
tweets from that user: demo [Han et al., 2013]

� Challenges:
� label set semantics: ideally continuous 2D representation
� classifier output: ideally PDF over 2D space rather than

discrete [Priedhorsky et al., 2014]
� label set size (even assuming discrete representation,

3000+ cities in Han et al. [2014])
� training set size (millions+ of training instances)
� “currency” of the model (ideally want to update the model

dynamically)
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User Geolocation: Findings to Date

� The choice of class representation and approach to feature
selection has a larger impact on results than the choice of
model

� Including non-geotagged tweets boosts results (training and
test)

� Pre-partitioning users by language improves results
appreciably

� User metadata is a better predictor of location than the
body of the posts from a user (esp. user-declared location,
but self-description, timezone and real name also boost
accuracy)

� Models stagnate over time

� Networks are much more effective than content ...

Source(s): Roller et al. [2012], Jurgens [2013], Han et al. [2014]
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Example Task 3: Joint Discourse and

Semantic Analysis I

� And just to prove that there’s more to social media than
Twitter: thread classification of web user forum threads
(e.g. has the information need of the initiator been
resolved? ), based on the content of posts in the thread
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Example Task 3: Joint Discourse and

Semantic Analysis II

UserB
Post2

UserA
Post3

UserC
Post5

Ive been using Red Hat for along time now ... But 
I hear a lot of fuss about Debian ... I like apt-get 
a lot ... which of those CDs do I need? ...

UserA
Post1

if you like apt-get, you only need disk 1, everything 
else you need, you can just apt-get it.

 ... Is that going to be an obvious option in the 
installer or do I have to just select the minimal stuff 
and then do a dist upgrade?

UserB
Post4

there is a spot where you choose ftp or http sites for 
downloading files ... At the end of the installer, there 
is ... After this you are left with ...

I mostly use a minimal boot CD (based on bf2.4) to 
install Debian ... Use it to install the base system, 
then apt-get or dselect to get whatever you need ...

Debian VS. Red Hat

Source(s): Wang et al. [2012]
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Example Task 3: Joint Discourse and

Semantic Analysis III

UserB
Post2

UserA
Post3

UserC
Post5

Ive been using Red Hat for along time now ... But 
I hear a lot of fuss about Debian ... I like apt-get 
a lot ... which of those CDs do I need? ...

UserA
Post1

if you like apt-get, you only need disk 1, everything 
else you need, you can just apt-get it.

 ... Is that going to be an obvious option in the 
installer or do I have to just select the minimal stuff 
and then do a dist upgrade?

UserB
Post4

there is a spot where you choose ftp or http sites for 
downloading files ... At the end of the installer, there 
is ... After this you are left with ...

I mostly use a minimal boot CD (based on bf2.4) to 
install Debian ... Use it to install the base system, 
then apt-get or dselect to get whatever you need ...

Debian VS. Red Hat

Solved?

Source(s): Wang et al. [2012]
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Example Task 3: Joint Discourse and

Semantic Analysis IV

UserB
Post2

UserA
Post3

UserC
Post5

Ive been using Red Hat for along time now ... But 
I hear a lot of fuss about Debian ... I like apt-get 
a lot ... which of those CDs do I need? ...

UserA
Post1

if you like apt-get, you only need disk 1, everything 
else you need, you can just apt-get it.

 ... Is that going to be an obvious option in the 
installer or do I have to just select the minimal stuff 
and then do a dist upgrade?

UserB
Post4

there is a spot where you choose ftp or http sites for 
downloading files ... At the end of the installer, there 
is ... After this you are left with ...

I mostly use a minimal boot CD (based on bf2.4) to 
install Debian ... Use it to install the base system, 
then apt-get or dselect to get whatever you need ...

Debian VS. Red Hat 0+Question-Question

Ø

1+Answer-answer

1+Answer-confirmation

1+Answer-add

4+Answer-answer

Source(s): Wang et al. [2012]
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User-based Semantic Analysis: Summary

� User-based semantic analysis of social media – why care?
� much to be gained from inclusion of user priors in semantic

analysis (“personalised semantic analysis”, e.g. one sense
per tweeter)

� user-level aggregation as enabler for user-level analysis (e.g.
user geolocation)

� user identify powerful in understanding the
information/discourse structure of threads on user forums,
contributing to thread-level semantic analysis

� vast untapped space of possibilities waiting to be explored
by semanticists ...
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Network-based Semantic Analysis

� The final piece in today’s puzzle is (user) network data, in
the form of:

� followers/followees
� user interactions
� reposting of content
� shared hashtags
� likes/favourites/starring/voting/rating/...

...

� Underlying assumption of “homophily” = similars attract
(or less commonly “heterophily” = similars repel), as basis
of propagating labels across network of users
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Network-only Models

� It is possible to perform classification based on the network
alone, e.g.:

� label propagation: starting with a small number of
labelled nodes in a graph, iteratively label other nodes
based on the majority label of their neighbours [Zhu and
Ghahramani, 2002, Jurgens, 2013]

� For tasks such as user geolocation, network-based models
have been shown to be far more effective than
content-based models
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Combining Content and Network Analysis I

� Lots of possibilities for combining content- and
network-analysis:

� nearest neighbour: starting with a small number of
geolocated users, iteratively geolocate other users based on
the geolocations of their closest neighbour(s), based on
content similarity (e.g. user-declared location or post
similarity) [Jurgens, 2013]

� generate the network based on content similarity, and
perform network-based analysis [Burfoot et al., 2011]

� generate network-based features (e.g. co-participation or
reply-to features), and incorporate into content-based
classification [Fortuna et al., 2007]

� Also possibility of performing user classification using joint
network and content analysis, e.g. Thomas et al. [2006],
Burfoot et al. [2011]
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Combining Content and Network Analysis II

� Some well-known approaches to combining content and
network analysis are:

� iterative classification [Bilgic et al., 2007]:

1 apply base classifiers to a text-based representation of each
instance (e.g. the posts of a given user)

2 expand the feature representation of each user through the
incorporation of relational features

3 retrain and reapply the classifier; repeat step 2 until class
assignments stabilise

� dual classification:

1 generate base classifications for each instance based on: (a)
content-based classifiers; and (b) network-based classifiers

2 normalise the combined predictions, and decode the
content- and network-based classifications using collective
classification [Sen et al., 2008]
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Where it really Starts Getting Interesting ...

� Scaling it up: much algorithmic work to be done in scaling
up (higher-end) network analysis and joint content +
network methods to social media-based social networks

� Heterogeneous networks: while there is a large body of
literature based on “first-order” social networks, much less
on combining multiple heterogeneous networks of different
semantics (e.g. social network vs. content similarity (×n)
vs. repost vs. hashtag sharing vs. favouriting vs. ...)

� Dynamic network modelling: also much less work on
dynamic network and content analysis, and interpreting the
semantics of network and content change
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Complications in Using Networks

� Difficulty in getting access to “first-order” social network
data from sites such as Twitter and Facebook

� Extreme difficulty in getting access to diachronic network
data

� Sparsity of networks based on co-participation, reply-to, etc.

� Noisiness of networks based on content similarity
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Network-based Semantic Analysis: Summary

� Network-based semantic analysis of social media – why
care?

� simple network-based methods far superior to
content-based methods in some instances

� combined network- and content-analysis has been shown to
be superior to just network or just content analysis in a
number of contexts

� increasing interest in combining network- and
content-based analysis from the network analysis
community; who better than this community to lead that
effort?
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Tame your own Social Media Data

� Assuming you are interested in only certain languages, you
will first need to carry out language identification [Lui
and Baldwin, 2014]

� If you are after high recall and not interested in the
“unknown”, you can either ignore content with high OOV
rates or look to lexical normalisation [Han and Baldwin,
2011, Eisenstein, 2013]

� If you are interested in regional analysis, you either need to
make do with the subset of geotagged messages, or carry
out your own geolocation

� For many semantic applications, you need to consider what
is a “representative” sample of social media data, and
possibly consider user profiling as a means of
selecting/excluding certain users [Bergsma et al., 2013]
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Key Resources

� Language identification: langid.py, CLD2, langdetect,
TwitIE, polyglot

� (English) tokenisation: Twokenizer, Chris Potts’ tokeniser

� (English) lexical normalisation: UniMelb lexical
normalisation dictionary, TextCleanser, TwitIE

� POS tagging: ARK Twitter POS tagger, Twitter NLP,
TwitIE

� NER: Twitter NLP, TwitIE

� Message geolocation/geoparsing: CMU GeoLocator

� User geolocation: UniMelb Twitter user geolocator

� User profiling: Bot or not, Twitter Clusters

https://github.com/saffsd/langid.py
https://code.google.com/p/cld2/
https://code.google.com/p/language-detection/
http://gate.ac.uk/wiki/twitie.html
https://github.com/saffsd/polyglot
https://github.com/brendano/tweetmotif
http://sentiment.christopherpotts.net/code-data/happyfuntokenizing.py
http://www.csse.unimelb.edu.au/~tim/etc/emnlp2012-lexnorm.tgz
http://www.csse.unimelb.edu.au/~tim/etc/emnlp2012-lexnorm.tgz
https://github.com/gouwsmeister/TextCleanser
http://gate.ac.uk/wiki/twitie.html
http://www.ark.cs.cmu.edu/TweetNLP/
https://github.com/aritter/twitter_nlp
https://gate.ac.uk/wiki/twitter-postagger.html
https://github.com/aritter/twitter_nlp
http://gate.ac.uk/wiki/twitie.html
https://github.com/geoparser/geolocator
https://github.com/tq010or/acl2013
http://truthy.indiana.edu/botornot/
http://www.clsp.jhu.edu/~sbergsma/TwitterClusters/
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Some Datasets to Get Going with

� Sense-tagged social media datasets:
� lexical sample: Twitter [Gella et al., 2014]
� supersense data: Twitter [Johannsen et al., to appear]

� User geolocation: CMU Geo-tagged Microblog Corpus
[Eisenstein et al., 2010]

� Web user forum thread and post analysis: CNET
thread dataset [Kim et al., 2010, Wang et al., 2012]

http://people.eng.unimelb.edu.au/tbaldwin/etc/eacl2014-one_sense.tgz
https://github.com/coastalcph/supersense-data-twitter
http://www.ark.cs.cmu.edu/GeoText/
http://www.csse.unimelb.edu.au/research/lt/resources/conll2010-thread/
http://www.csse.unimelb.edu.au/research/lt/resources/conll2010-thread/
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Summary

� Social media opens up a myriad of new opportunities for
semantic research, in terms of content analysis, potentially
incorporating user and network information

� Research in the space is booming, much of it outside NLP
... the *SEM community has much to offer in
leading/guiding the research agenda:

@semanticists get on board with social
media analytics #nlproc

� These slides are available from: http://people.eng.
unimelb.edu.au/tbaldwin/pubs/starsem2014.pdf

http://people.eng.unimelb.edu.au/tbaldwin/pubs/starsem2014.pdf
http://people.eng.unimelb.edu.au/tbaldwin/pubs/starsem2014.pdf
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