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The Nature of a Word Representation I

Distributed representation: words are projected into an
n-dimensional real-valued space with “dense” values [Hinton
et al., 1986]

bicyle : [ 0.834 −0.342 0.651 0.152 −0.941 ]
cycling : [ 0.889 −0.341 −0.121 0.162 −0.834 ]

Local representation: words are projected into an
n-dimensional real-valued space using a “local”/one-hot
representation:

bicycle cycling

bicycle : [ ... 1 ... 0 ... ]
cycling [ ... 0 ... 1 ... ]
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The Nature of a Word Representation II

In the multilingual case, ideally project words from different
languages into a common distributed space:

bicycle EN : [ 0.834 −0.342 0.651 0.152 −0.941 ]
cycling EN : [ 0.889 −0.341 −0.121 0.162 −0.834 ]

Rad DE : [ 0.812 −0.328 −0.113 0.182 −0.712 ]
Radfahren DE : [ 0.832 −0.302 0.534 0.178 −0.902 ]
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The Basis of a Word Representation I

Representational basis: the basis of the projection for
word w ∈ V is generally some form of “distributional”
model, conventionally in the form of some aggregated
representation across token occurrences wi of “contexts of
use” ctxt(wi ):

dsem(w) = agg({ctxt(wi )})
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The Basis of a Word Representation II

“Context of use” represented in various ways, incl.
bag-of-words, positional words, bag-of-n-grams, and typed
syntactic dependencies [Pereira et al., 1993, Weeds et al.,
2004, Padó and Lapata, 2007]

... to ride a bicycle or solve puzzles ...
... produced a heavy-duty bicycle tire that outlasted ...

... now produces 1,000 bicycle and motorbike tires ...
... Peterson mounts her bicycle and grinds up ...
... some Marin County bicycle enthusiasts created a ...

First-order model = context units represented “directly”;
second-order models = context represented via
distributional representation of each unit; ...
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Compositional Semantics

Compositional semantic model = model the semantics
of an arbitrary combination of elements (p) by composing
together compositional semantic representations of its
component elements (p = 〈p1, p2, ...〉); for “atomic”
elements, model the semantics via a distributed (or
otherwise) representation:

csem(p) =

{
dsem(p) if p ∈ V
csem(p1) ◦ csem(p2)... otherwise

Source(s): Mitchell and Lapata [2010]
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Comparing Representations

For both word and compositional semantic representations,
“comparison” of representations is generally with simple
cosine similarity, or in the case of probability distributions,
scalar product, Jensen-Shannon divergence, or similar

Source(s): Dinu and Lapata [2010], Lui et al. [2012]
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Learning Word Representations I

Two general approaches [Baroni et al., 2014]:
1 Count: count up word co-occurrences in context window

of some size, across all occurrences of a given target word;
generally perform some smoothing, weighting and
dimensionality reduction over this representation to
produce a distributed representation

2 Predict: use some notion of context similarity and
discriminative training to learn a representation whereby
the actual target word has better fit with its different
usages, than some alternative word [Collobert et al., 2011]
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Learning Word Representations II

In the immortally-jaded words of [Baroni et al., 2014,
p244–245]:

As seasoned distributional semanticists ... we were annoyed
by the triumphalist overtones often surrounding predict
models ... Our secret wish was to discover that it is all
hype, and count vectors are far superior to their predictive
counterparts. A more realistic expectation was that a
complex picture would emerge ... Instead, we found that
the predict models are so good that, while the triumphalist
overtones still sound excessive, there are very good reasons
to switch to the new architecture.
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Sample Count Methods

Term weighting: positive PMI, log-likelihood ratio

Dimensionality reduction: SVD, non-negative matrix
factorisation

“Standalone” methods:

Brown clustering [Brown et al., 1992]: hierarchical
clustering of words based on maximisation of bigram
mutual information
Latent Dirichlet allocation (LDA: Blei et al. [2003]):
construct term–document matrix (possibly with
frequency-pruning of terms), and learn T latent “topics”
(term multinomials per topic) and topic allocations (topic
multinomials per document); derive word representations
via the topic allocations across all usages of a target word
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Approaches to Composition

Two general approaches:
1 Apply a predefined operator to the component (vector)

representations, e.g. (weighted) vector addition, matrix
multiplication, tensor product, ... [Mitchell and Lapata,
2010]

2 (Hierarchically) learn a composition weight matrix, and
apply a non-linear transform to it at each point of
composition [Mikolov et al., 2010, Socher et al., 2011,
2012, Mikolov et al., 2013]
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Sample Learned Compositional Methods

Recursive neural networks [Socher et al., 2012,
2013]): jointly learn composition weight vector(s) and tune
word embeddings in a non-linear bottom-up (binary)
recursive manner from the components

optional extras: multi-prototype word embeddings [Huang
et al., 2012], incorporation of morphological structure
[Luong et al., 2013]

Recurrent neural networks [Mikolov et al., 2010,
2013]: learn word embeddings in a non-linear recurrent
manner from the context of occurrence
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Semantics and MT: pre/ex-SMT

Back in the day of RBMT, (symbolic) lexical semantics was
often front and centre (esp. for distant language pairs),
including:

interlingua [Mitamura et al., 1991, Dorr, 1992/3]
formal lexical semantics [Dorr, 1997]
verb classes and semantic hierarchies used for
disambiguation/translation selection and discourse analysis
[Knight and Luk, 1994, Ikehara et al., 1997, Nakaiwa et al.,
1995, Bond, 2005]

There is also an ongoing traditional of work on
compositional (formal) semantics in MT, based on deep
parsing [Bojar and Hajič, 2008, Bond et al., 2011]
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Semantics and MT: Enter SMT I

In the space of SMT, many have attempted to make use of
(lexical) semantics, but few success stories, notably:

Vickrey et al. [2005]: WSD-based models enhance “word
translation” (fill-in-the-blank MT)
Cabezas and Resnik [2005]: source “word senses” via word
alignment, and train a WSD system over them; inject
translations into the phrase table based on the (soft)
predictions of the WSD model
Chan et al. [2007]: WSD-style disambiguation model
predictions incorporated into Hiero improve SMT
Carpuat and Wu [2007]: integrating WSD-style models
into the SMT decoder and disambiguating over phrasal
translation candidates improves SMT
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Semantics and MT: Enter SMT II

Zhao and Xing [2007], Xiao et al. [2012], Eidelman et al.
[2012]: biasing the translation model with topic
model-based features improves SMT

Carpuat et al. [2013]: when moving to new domains,
incorporation of “new sense” information into the phrase
table improves SMT

Instances of methods which successfully use an explicit
representation of word sense are much harder to find:

Xiong and Zhang [2014]: improvements in SMT through:
(1) performing all-words WSI based on topic modelling
[Lau et al., 2012]; (2) training per-word disambiguation
models conditioned on the sense assignment; and (3)
incorporation of the translation predictions into the decoder
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Semantics and MT Evaluation

More joy in the MT evaluation metric space, e.g.:

Liu et al. [2010], Dahlmeier et al. [2011]: the inclusion of
WordNet-based synonym features into TESLA improves
the metric
Denkowski and Lavie [2011]: the inclusion of WordNet
synset overlap into the unigram matching component of
METEOR improves the metric
Lo and Wu [2011], Lo et al. [2012]: MT evaluation based
on shallow semantic parsing + automatic semantic frame
alignment correlates better than string-based methods for
adequacy-based evaluation
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Semantics and Multilingual Text

Numerous examples of multilingual text improving semantic
analysis, including:

WSD [Dagan and Itai, 1994, Diab and Resnik, 2002, Ng
et al., 2003, Tufiş et al., 2004]
paraphrase detection [Barzilay and McKeown, 2001, Dolan
et al., 2004, Bannard and Callison-Burch, 2005]
PP attachment disambiguation [Schwartz et al., 2003]
wordnet construction [Bentivogli and Pianta, 2005, Bond
et al., 2012]
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Outline of Possible Extra Components in a

Neural SMT System

Neural language model jointly conditioned on the target and
source languages [Le et al., 2012, Kalchbrenner and
Blunsom, 2013, Devlin et al., 2014]

Bilingual word embeddings [Zou et al., 2013]

Dynamic pooling [Socher et al., 2011] or convolutional NNs
[Kalchbrenner and Blunsom, 2013] to capture
(pseudo-)syntax
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Neural SMT

After years of attacking a very solid brick wall with different
semantic battering rams, neural SMT models are producing
big gains in MT accuracy across the board ... what gives?

it is well established that neural LMs are more accurate
than conventional LMs [Mikolov et al., 2010]
neural LMs are also more expressive, opening up the
possibility of jointly modelling the source and target
language strings [Le et al., 2012, Kalchbrenner and
Blunsom, 2013, Devlin et al., 2014]
convolutional NNs et al. appear to be an effective means of
“continuous” syntactic and semantic composition
... more to the point, what is semantics anyways?
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Semantics and SMT
Where semantics had largely failed to deliver in the past, it
is now seemingly delivering wholesale ...

are the new-generation neural SMT models really
semantic?
NNLMs vs. sense-based translation partitioning vs. better
context modelling ... aren’t we comparing apples and
oranges?
the difference between formal compositional models and
distributed models may be less than it would appear
[Grefenstette, 2013, Beltagy et al., 2013, Lewis and
Steedman, 2013]
what is semantics anyway?
Semantics ... focuses on the relation between signifiers ... and

what they stand for, their denotation. (Wikipedia 25/10/14)

Important to bear in mind that the storyline in other areas
of NLP is strikingly similar
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Lexical Semantic Approaches via Distributed,

Compositional Approaches

Returning to the isolated success stories of semantics
improving SMT, what were they doing right, and what are
the implications for neural SMT?

In the case of Cabezas and Resnik [2005], Chan et al. [2007]
and Carpuat and Wu [2007], I would argue that the success
of the model came from richer
representations/disambiguation of context embedded in an
SMT context ... which is the greatest advantage offered by
distributed approaches to SMT

In the case of Carpuat et al. [2013], pre-training over
(target language) data in the novel domain can potentially
capture the necessary mapping onto the “old” domain to
substitute for the domain dictionary etc.
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Distributed, Compositional Models and MT

Evaluation

Clear scope to incorporate (general-purpose) distributed
word/phrase representations into MT evaluation metrics

Also possibility to include composition into models (a la
Socher et al. [2011] or Kalchbrenner and Blunsom [2013])

Words of caution:

need to fix word embeddings and composition weight
matrices for the metric to have determinism/reproducibility
slight concerns about the domain-stability of the learned
representations
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Continuous Syntax-based Neural SMT

Another natural direction for distributed, compositional
SMT models is neural SMT incorporating some model of
syntax, relevant to which is:

Socher et al. [2013]: parsing with CVGs and syntactically
untied NNs (e.g. for decoding into English)
Kalchbrenner and Blunsom [2013]: implicit syntactic
parsing via composition with convolutional NNs
Jones et al. [2012]: parsing with synchronous hyperedge
replacement grammars
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SMT models is neural SMT incorporating some model of
syntax, relevant to which is:

Socher et al. [2013]: parsing with CVGs and syntactically
untied NNs (e.g. for decoding into English)
Kalchbrenner and Blunsom [2013]: implicit syntactic
parsing via composition with convolutional NNs
Jones et al. [2012]: parsing with synchronous hyperedge
replacement grammars
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Bringing Neural SMT to the Masses: Factored

Neural SMT

Factored SMT [Koehn and Hoang, 2007] is a famously
attractive mechanism for incorporating arbitrary (linguistic)
features (e.g. morphology or semantics) into an SMT
system in the form of extra features in the log-linear model

despite intuitive promise and ease of use, factored SMT
hard to get to work in practice
neural SMT perhaps offers a more promising way of
integrating arbitrary features as part of “soft” multi-order
representation (cf. Socher et al. [2013], or simply as the
basis for learning extra “feature embeddings”)
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Talk Outline

1 Elements of a Compositional, Distributed SMT
Model

2 Training a Compositional, Distributed SMT Model

3 Semantics and SMT

4 Moving Forward

5 Summary
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Summary

Composed, distributed reflections on semantics and SMT,
including:

what is a distributed representation, distributional
semantics, semantic composition, and what are some
standard approaches to each?
what bits of semantics have contributed to SMT in the
past and why; what does this tell us about the recent
successes of “neural SMT”?
random thoughts on possible short- to medium-term
possibilities for research on semantic SMT

what is semantics anyway?
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