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Abstract

We propose a number of unsupervised
methods for extracting prepositional verbs
(e.g. refer to, look for) from corpus data,
based on linguistic tests and/or statistical
measures. We demonstrate the effective-
ness of the individual techniques over a
prepositional verb deep lexical acquisition
task, and go on to document the successes
of an unsupervised classifier combination
method.
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1 Introduction

There is growing acknowledgement of the impor-
tance of multiword expressions (MWEs) in any
holistic language technology solution, particularly
in applications which require fine-grained linguistic
precision. We define MWEs to be complex lexical
items made up of multiple word segments, which are
lexically, syntactically, semantically, pragmatically
and/or statistically idiosyncratic (e.g.ad hoc, by and
large, kick the bucket, good morningand summer
school, respectively: Sag et al. (2002), Calzolari et
al. (2002)).

Any grammar engineering solution to MWEs is
made up of two components: (1) the machinery to
systematically capture the idiosyncracies of differ-
ent MWE classes, in the form of a system of lexi-
cal types; and (2) the lexical items by which each

lexical type is populated. For English verb particle
constructions (VPCs), for example, we may encode
classes including: (1) intransitive VPCs (e.g.shoot
off); (2) transitive VPCs which undergo the particle
alternation (e.g.look upas inlook up the word/look
the word up); and (3) transitive VPCs which strictly
occur with split word order (e.g.have offas inhave
Friday off/*have off Friday). Each of these lexical
types would then be associated with a set of verb–
particle pairs which have the predicted syntax. Our
interest is in the second of these tasks, that is the
population of a lexicon with MWEs classified ac-
cording to an appropriate set of lexical types.

There are a number of established methods for
populating a lexicon. Perhaps the most obvious
technique is to mine lexical items from some pre-
existing machine-readable dictionary. While this
may sound trivial, it suffers from two primary short-
comings: (1) for productive MWEs, the coverage of
pre-existing dictionaries tends to be patchy (as was
shown by Villavicencio (2003) for VPCs); and (2)
there are often mismatches in the lexical type sys-
tems adopted in different lexicons, such that manual
intervention is required to align the lexical type of
some or all of the data (Sanfilippo and Poznański,
1992). An alternative strategy is to learn lexical
items from corpus data, in a process we term corpus-
baseddeep lexical acquisition, that is the acqui-
sition of lexical items from corpus data in a form
compatible with some deep lexical resource. Deep
lexical acquisition has the advantage over dictionary
mining techniques that it is sensitive to the corpus
it is applied to, making it possible to tune a lexicon
to a particular domain or register. It has the further
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benefit that we are able to fine-tune our extraction
method to the peculiarities of the lexical type system
in question, and can feed the output directly into the
lexicon without worry of misalignment.

The particular MWE type we target for deep lexi-
cal acquisition is English prepositional verbs (PVs),
that is verbs which select for a specified (transitive)
preposition, such aslook for or refer to. Similarly
to VPCs, PVs are productive and dictionary cover-
age is thus variable (see Section 2). This motivates
a corpus-based deep lexical acquisition approach to
PV learning.

We propose a range of methods for extract-
ing prepositional verbs, each of which operates in
an unsupervised fashion, ranking verb–preposition
combinations according to a range of corpus-
derived statistics of verb, preposition and noun co-
occurrence. In evaluation over a range of training
corpora, we found the performance of the individual
methods to vary considerably, but also that the com-
ponent methods combine together to produce an ex-
traction technique which is superior to the individual
methods.

The remainder of this paper is structured as fol-
lows. Section 2 defines PVs and illustrates the dif-
ficulty of the extraction task. Section 3 details the
full range of methods proposed for extracting PVs.
Section 4 evaluates the methods relative to gold-
standard dictionary data. Finally, Section 5 con-
cludes the paper with a discussion of past research.

2 The Prepositional Verb Extraction Task

In this section, we provide a linguistic description
of PVs as is relevant to our extraction method, and
detail the gold-standard lexical resources used in this
research.

2.1 The Nature of Prepositional Verbs

We defineprepositional verbs (PVs) to be verbal
MWEs which select for a PP argument made up of
a specified preposition head and NP argument. Ex-
amples of PVs arerefer to (the book), come across
(the letter)andskate over (the issue). As with many
MWEs, PVs cover the full spectrum of semantic
compositionality, e.g.refer toor compete inare fully
compositional, whereasplay on (one’s fears)and
grow on (you)are relatively far removed from the

semantics of the simple verbs.
The preposition in a PV can be either fixed or mo-

bile: fixed prepositions(e.g.come across(the let-
ter)) must occur immediately after the verb, while
mobile prepositions (e.g. refer to (the book)) un-
dergo the same range of variation as non-specified
prepositions (e.g.walk down (the path): Huddleston
and Pullum (2002)). Basic tests which can be used to
distinguish PVs from simple verb–preposition com-
binations are:

1. the object of the preposition is passivisable in
mobile preposition PVs (e.g.the book was re-
ferred to) but not fixed preposition PVs or sim-
ple verb–preposition combinations (e.g.*the
letter was come acrossand *the path was
walked down, respectively);

2. in fixed preposition PVs, the preposition must
follow immediately after the verb (e.g.*the let-
ter across which I came, *across which let-
ter I came, *come suddenly across the letter),
whereas mobile preposition PVs and simple
verb–preposition combinations are more flex-
ible (e.g.the book referred toandwalk quietly
down the path, respectively);

Were it possible to obtain expert judgements on
the syntactic status of verb–preposition combina-
tions, these tests would be sufficient to identify PVs.
However, given that we intend to use corpus data
as our sole source of evidence in distinguishing
PVs from simple verb–preposition combinations, it
is doubtful how much leverage the tests are going
to give us, particularly for mobile preposition PVs
which are separated from simple verb–preposition
combinations only by the ability to passivise.

One further construction which is potentially con-
fusable with PVs is transitive VPCs (e.g.look up
(the word)). Here, however, we can draw on both
word order and preposition valence to discriminate
the two MWE classes: transitive VPCs generally
undergo the particle alternation (e.g.look up the
word/look the word upvs. refer to the book/*refer
the book to), and the preposition is intransitive
in VPCs but transitive in PVs. Fortunately, part-
of-speech taggers and chunk parsers are remark-
ably effective at disambiguating preposition valence,



ameliorating the effects of this potential ambiguity
(Baldwin, to appear).

For the purposes of this paper, we will focus ex-
clusively on PVs which select for a single PP. We
recognise that there are further lexical types that
warrant consideration, including PVs which select
for both an NP and a PP (e.g.intend (the book) for
(Kim)) and PVs which select for two PPs (e.g.look
to (Kim) for (advice)). However, single-PP PVs are
by far the most common type of PV, and thus benefit
most from deep lexical acquisition. Also, in devel-
oping an extraction technique for single-PP PVs, we
can hope to arrive at an extraction technique which
can later be extended to other PV lexical types.

2.2 Lexical Resources

In order to carry out deep lexical acquisition, we
clearly need a deep lexical resource and associ-
ated system of lexical types to tailor our method to.
The particular deep lexical resource we select is the
LinGO English Resource Grammar (LinGO-ERG:
Flickinger et al. (2000), Copestake and Flickinger
(2000)), a medium-scale HPSG grammar of En-
glish. The PV lexical type that we are interested
in is v empty prep intrans le (i.e. single-PP
PV), which accounts for around half of the PV lexi-
cal entries in the LinGO-ERG lexicon (based on the
grammar version of 31 Dec, 2004). Note that the
LinGO-ERG does not currently distinguish between
fixed and mobile preposition PVs, and we thus do
not need to make this distinction in the extraction
task.1

In order to study patterns of verb–preposition
combination over a fixed set of verbs and prepo-
sitions, we first identified the 100 most frequent
verbs and 10 most frequent transitive prepositions
in the written component of the British National
Corpus (BNC: Burnard (2000)), as detailed in Ap-
pendix A; this sampling was based on the lemma-
tised output of a custom-built Penn-style tagger. For
the 1000 verb–preposition combinations generated
by this dataset, we checked for an instance of a

1In the current version of the LinGO-ERG, the
v empty prep intrans le lexical type allows tem-
poral and locative adverbials but not sentential adverbs to
occur between the verb and preposition, thus overgenerating
in instances such as*Kim came yesterdayacross the bookand
undergenerating in instances such asKim referred frequentlyto
the book.

v empty prep intrans le lexical item in ei-
ther the LinGO-ERG or the Longman Phrasal Verbs
Dictionary (Dignen et al., 2000). In this way, we
identified 135 gold standard PVs for use in evalua-
tion. Note that 75 of the 135 gold-standard PVs were
found in the LinGO-ERG and 94 in the Longman
dictionary, with an overlap of only 34 PVs. That is,
the intersection of the PV content of the two lexi-
cal resources accounts for less than half of the PV
data found in each, underlining the patchiness of PV
coverage in lexical resources.

3 Extraction Methods

We employ a selection of unsupervised corpus-
based extraction methods, each of which ranks the
set of verb–preposition pairs for relative likelihood
of being a PV. Our extraction methods can be cat-
egorised as: (a) purely statistical (Simple Verb–
Preposition Frequency, the Dice Coefficient, Point-
wise Mutual Information,χ2 and Log-likelihood
Ratio); (b) purely linguistic, based on our linguis-
tic tests (Stranded Preposition Frequency, Distance-
conditioned Verb–preposition Frequency and Verb–
preposition Distance Ratio); and (c) hybrid statis-
tical and linguistic (Skew Divergence). We also
present a basic method for system combination.

The corpora we use to derive the feedstock statis-
tics for each method are: the Brown corpus (0.3m
words) and the Wall Street Journal (WSJ) corpus
(0.7m words), both from the Penn Treebank (Mar-
cus et al., 1993), and also the BNC (90m words).
In each case, we chunk parsed the raw text data us-
ing a custom-built full text chunk parser based on
fnTBL 1.0 (Ngai and Florian, 2001), and lemma-
tised each word token using morph (Minnen et al.,
2001). All verb, preposition and noun token statis-
tics were based on the heads of the respective chunk
types in the chunker output.

Simple Verb–preposition Frequency

The most straightforward extraction method is
based on the raw frequency of occurrence of each
verb–preposition combination in the corpora. In
this, we generate a ranking based on the frequency
f (V, P ) of verb V and prepositionP as heads of
a verb and preposition chunk, respectively, within
4 chunks of each other; we label this methodV-P
FrequencyBASE in Table 1.



Dice Coefficient: 2 f (V,P )
f (V,∗)+f (∗,P ) (1)

Pointwise Mutual Information: log p(V,P )
p(V ) p(P ) (2)

χ2 :
∑

i,j
(fij−f̂ij)

2

f̂ij
(3)

Log-likelihood Ratio: −2
∑

i,j fij log fij

f̂ij
(4)

Verb-preposition Distance Ratio:
∑Distance

i=0
f (V,P,i)∑N

i=0
f (V,P,i)

(5)

Skew Divergence: sα(q, r) = D(r || αq + (1 − α)r) (6)

D(q || r) =
∑

y q(y)(log q(y) − log r(y)) (7)

Association Measures

We tested a selection of association measures with
wide currency in the collocation extraction litera-
ture (Schone and Jurafsky, 2001; Pearce, 2002),
namelythe Dice Coefficient, Pointwise Mutual In-
formation (Church and Hanks, 1989),χ2 (Chi-
square), and the Log-likelihood Ratio (Dunning,
1993). Each association measure calculates the de-
viation between the observed joint frequency of verb
V and particleP (i.e. f (V, P )) and the expected
joint frequency assuming independence between the
two lexical items (i.e.̂f (V, P )). This takes the form
of a direct ratio in the case of the Dice Coefficient
and Pointwise Mutual Information (Equations 1 and
2), or alternatively analysis of the verb–preposition
contingency table in the case ofχ2 and the Log-
likelihood Ratio (Equations 3 and 4).

The manner in which we employ the association
measures is, for a given corpus, to calculate the fre-
quency with which each of our 100 most-frequent
verbs and 10 most-frequent prepositions occur as the
head of verb and preposition chunks, respectively;
the joint verb–preposition frequencies are based on
strict adjacency. The output of each method takes
the form of a descending ranking of preposition–
verb pairs, relative to association score.

In our implementation of these measures, we bor-
rowed heavily from the Ngram Statistics Package
(Banerjee and Pedersen, 2003).

Stranded Preposition Frequency

In the first linguistic test in Section 2.1, we ob-
served that the object of the preposition is passivis-
able in mobile preposition PVs, but not simple verb–
preposition combinations or fixed preposition PVs.
We operationalise this test by calculating the simple
frequency of verb–preposition pairs where the tran-
sitive preposition immediately follows a verb chunk
headed by the verb in question, and the preposition
is immediately proceeded by a sentence or clause
boundary (i.e. anO chunk headed by any member
of the regular expression[.,:;!?] ), such as in
[N The book] [NP Kim] [VP referred] [PP to] [O .]. We
term this the “stranded preposition” frequency due
to there being no object NP proceeding the preposi-
tion.

Distance-conditioned Verb–preposition
Frequency

In the second linguistic test in Section 2.1, we ob-
served that the preposition tends to occur immedi-
ately after the verb in fixed preposition PVs. We
apply this test by calculating the co-occurrence fre-
quency f (V, P, i) of prepositionP and the near-
est verbV to the left at “chunk distances”i =
0, 1, .., 4; the chunk distance is simply the number of
chunks intervening between the verb and preposition
chunks headed byV andP , respectively. For ex-
ample, the sentence [NP Kim] [VP referred] [PP on]
[NP occasion] [PP to] [NP the book] would constitute



an occurrence ofrefer to at distance 2. For each
value of i, we generate an independent ranking of
verb–preposition pairs, which we then combine by
ranking the pairs in ascending order of mean rank.
We label this second methodV-P FrequencyDIST

in Table 1.

Verb–preposition Distance Ratio

As a variant on Distance-conditioned Verb–
preposition Frequency (above), we calculate the ra-
tio of verb–preposition corpus instances found at a
given chunk distanceDistance or less as given in
Equation 5, whereN , the upper bound on chunk
distance, was set to 4 throughout evaluation. In
accordance with the second linguistic test in Sec-
tion 2.1, we expect that for smaller values of
Distance this ratio will be higher for PVs than for
simple verb–preposition combinations. As for the
verb–preposition frequency method, we generate the
final ranking of verb–preposition pairs in ascend-
ing order of rank sum over the individual rankings
for Distance = 0, 1, ..., 4. Note that while mo-
bile preposition PVs can allow modifiers to occur
between the verb and preposition, we predict that
actual rates of occurrence relative to simple verb–
preposition combinations will be low, such that the
ratio will be equally capable of identifying both PV
types.

Skew Divergence

Skew divergence provides a means of measuring
the distance between two probability distributions.
It was proposed by Lee (2001) as an approximation
of the Kullback-Leibler (KL) divergence which is
robust to unseen events in the probability distribu-
tions being compared. It does this in an asymmet-
ric fashion by taking distributionsq andr, and for
each non-zero event probabilityq(y) in q, deriving a
corresponding event probability inr by interpolating
overq(y) andr(y) according tosα(q, r) as detailed
in Equations 6 and 7, whereD(q || r) is the KL di-
vergence. We follow Lee (2001) in settingα to 0.5
in our experiments.

We apply skew divergence to the task of PV
extraction by takingq as the distribution over
P (N |V, P ) andr as the distribution overP (N |P ).
That is, we find the distribution of: (a) nounsN gov-
erned by the prepositionP in verb–preposition com-

binationV −P , whereV andP are adjacent, and (b)
nounsN governed by the prepositionP in any con-
text; we then calculate the divergence between these
two distributions. Our expectation is that the selec-
tional preferences of a preposition in a given PV are
markedly different to those in general, and thus rank
the verb–preposition combinations in descending or-
der of skew divergence.

System combination

We carry out system combination by simply sum-
ming together the ranks for each verb–preposition
pair produced by the individual extraction methods,
and reranking the verb–preposition pairs in increas-
ing order of rank sum. This is carried out: (1) across
the rankings produced for each of our three corpora,
to produce a consolidated ranking for each individ-
ual extraction method (theAll column in Table 1);
(2) across the extraction methods for a given corpus
(the Combined row in Table 1); and (3) across all
corpora and all extraction methods, combining a to-
tal of 15 base rankings.

4 Evaluation

Evaluation of the extraction methods was performed
by taking the gold-standard set of 135 PVs and the
ranking of the 1000 preposition–verb combinations
generated by each method, and calculating: (a) the
Z-score according to the Mann-Whitney test, and (b)
the top-N F-score, that is the F-score as calculated
over the top-N items in the ranking. With the Mann-
Whitney test, the higher the Z-score, the greater the
relative proportion of PVs that are contained in the
upper reaches of the ranking. The upper bound on
the Z-score, generated with the 135 gold-standard
PVs ranked 1–135 followed by the remainder of
the verb–preposition combinations, is 18.7; the Z-
score for a random ranking, averaged over 100 ran-
dom rankings of the data, is 0.6. The reason for us
evaluating according to the top-N F-score is that, in
practical applications, we are going to need to se-
lect some number of items to skim off the top of the
ranking for inclusion in our lexicon as PV lexical
items. In our evaluation, we set N to 135 for scal-
ing convenience, such that the upper bound top-N
F-score, based on the gold-standard PVs occupying
ranks 1–135, is 1.00; the top-N F-score for a random



Corpus
Extraction Method Brown WSJ BNC All

Z F Z F Z F Z F

Random ranking 0.6 0.13 0.6 0.13 0.6 0.13 0.6 0.13
BASELINE:

V-P FrequencyBASE 4.0 0.16 1.8 0.14 0.5 0.13 4.5 0.16
PURELY STATISTICAL :

Dice Coefficient 10.8 0.42 7.4 0.30 10.3 0.39 11.2 0.37
Mutual Information 9.7 0.35 8.5 0.32 9.0 0.37 9.4 0.38
χ2 9.9 0.36 7.9 0.27 0.2 0.13 8.9 0.36
Log-likelihood 10.0 0.33 7.7 0.24 0.2 0.13 8.8 0.36

L INGUISTIC:
Stranded P 3.3 0.27 1.3 0.21 10.1 0.32 10.9 0.42
V-P FrequencyDIST 9.6 0.39 8.3 0.33 9.2 0.37 11.0 0.44
V-P Distance Ratio 8.7 0.32 8.0 0.30 9.4 0.36 9.2 0.33

HYBRID :
Skew Divergence 10.3 0.44 8.4 0.28 1.7 0.12 8.4 0.37

COMBINED 10.9 0.44 8.8 0.36 10.8 0.41 11.3 0.45
Perfect Ranking 18.7 1.00 18.7 1.00 18.7 1.00 18.7 1.00

Table 1: Prepositional verb extraction results (Z = Z-score calculated according to the Mann-Whitney test;
F = top-135 F-score)

ranking, generated through the same process of ran-
dom ranking as for the Mann-Whitney test, is 0.13.

The results for each method over the differ-
ent corpus combinations are presented in Table 1.
The baseline for the task is taken to be V-P
FrequencyBASE, that is the ranking method based on
raw verb–preposition frequency which does not take
chunk distance into account.

There is an interesting divergence in the per-
formance of the purely statistical methods: the
Dice Coefficient and Pointwise Mutual Information
performed relatively consistently across all corpus
datasets; with V-P FrequencyBASE, χ2 and Log-
likelihood, on the other hand, there was a negative
correlation between the size of the corpus and per-
formance, with the best performance for a single
corpus observed for the Brown corpus and the worst
performance (at or below the level of the random
baseline) over the BNC. It is interesting to observe
that the consistently-performing methods are both
based on analysis of joint vs. independent frequen-
cies (i.e.f (P, V ) vs. f (P, ∗) andf (∗, V )), whereas
the remainder of the methods are based exclusively
on observed and expected joint frequencies (either

simply f (P, V ), or f (P, V ) vs. f (P, V̄ ), f (P̄ , V )
andf (P̄ , V̄ ))). Further research is required to quan-
tify the impact on the results of the types of statistics
utilised in each method. Remarkably, all statistical
methods performed best over the Brown corpus de-
spite its modest size, although we have to some de-
gree factored out the effects of data sparseness in
focusing exclusively on frequent verbs and preposi-
tions. Corpus combination brought the results for
each method up to roughly the highest performance
level over a single corpus (namely the Brown cor-
pus). Overall, the Dice Coefficient was the best-
performing statistical method.

The purely linguistic extraction methods
(Stranded P, V-P FrequencyDIST and V-P Distance
Ratio) were all well clear of both the random
and V-P FrequencyBASE baselines, and performed
well across all corpora in terms of top-N F-score.
For Stranded P, we got an appreciable increase
in Z-score when using the BNC (and also when
combining the three corpora) as the larger data
volume dramatically reduced the effects of data
spareness, whereas the Z-score was relatively
constant for both V-P FrequencyDIST and V-P



Distance Ratio. Contrary to the results for the
purely statistical methods, for all three linguistic
methods, the results over the BNC were roughly
as good or better than results over the other two
corpora. The methods also benefitted from corpus
combination to a greater degree that the purely
statistical methods. Overall, V-P FrequencyDIST

was the best-performing linguistic method.
Similarly to a number of the purely statistical

methods, Skew Divergence performed best over the
small-scale Brown corpus and worst over the large-
scale BNC, although the relative drop-off in perfor-
mance was less pronounced. The top-N F-score for
Skew Divergence over the Brown corpus was the
best of all methods, equalling the combined method
at 0.44, whereas the Z-score tended to be relatively
less impressive, ranking 9/10 in corpus combination.
This suggests that Skew Divergence is effective in
the upper reaches of the ranking, but more erratic
towards the tail of the ranking.

There is very little separating the best of the
purely statistical (i.e. the Dice Coefficient) and the
best of the linguistic extraction methods (i.e. V-P
FrequencyDIST), and our one hybrid method (Skew
Divergence) is at roughly the same level of top-N
F-score (but has a lower Z-score – see above).

Corpus combination (i.e. combining the rankings
across all three corpora for a given method) led to
an equal or higher top-N F-score for 5 out of the 10
extraction methods, and equal or higher Z-score for
7 out of the 10 extraction methods. Method combi-
nation (i.e. combining the rankings across the basic
extraction methods) led to an equal or higher top-N
F-score and Z-score in all cases. The best overall
performance was achieved with corpus and method
combination in tandem, resulting in a Z-score of
11.3 and top-N F-score of 0.45.

To further explore the impact of corpus combi-
nation on the results, and the tailing off of the per-
formance of Skew Divergence observed above, we
plotted the precision–recall curves for the different
methods over each of the base corpora, and also un-
der corpus combination (see Figures 1–4). That is,
for each method, we determined the precision at re-
call rates of 0.1, 0.2, ... 1.0 in order to analyse the
consistency of the generated PV ranking. We focus
specifically on the results for V-P FrequencyBASE

(V-P Base), the Dice Coefficient (Dice), the Log-

likelihood Ration (LLR ), V-P FrequencyDIST (V-
P Distance), Skew Divergence (Skew) and method
combination (Combined). Note that we omit the
results for Mutual Information,χ2 , Stranded P and
V-P Distance Ratio as they are largely analogous to
those for the Dice Coefficient, Log-likelihood Ra-
tio, V-P FrequencyDIST and V-P FrequencyDIST, re-
spectively.

In Figures 1–4, we can verify our claims from
above that: (1) there is a negative correlation be-
tween corpus size and the performance of the Log-
likelihood Ratio and Skew Divergence (with the
below-baseline results over the BNC self-evident in
Figure 3), but that this effect is smoothed under cor-
pus combination (Figure 4); (2) the performance of
Skew Divergence under corpus combination is good
through the early stages of the ranking, but erratic in
the latter half of the ranking; (3) the Dice Coefficient
and V-P FrequencyDIST are both consistent perform-
ers across all corpora (although the Dice Coeffi-
cient is the more consistent throughout the ranking,
as borne out in the higher Z-score values); and (4)
method combination, particularly when combined
with corpus combination, is superior to the individ-
ual methods. The smoothing effect of corpus com-
bination is illustrated nicely in the largely linear de-
creasing curves in Figure 4, as contrasted with the
erratic tangle of curves in Figure 1.

5 Discussion

The work of Krenn and Evert (2001) on a German
PP-verb extraction task has interesting implications
for this research. German PP-verbs are unlike En-
glish PVs in that they have fixed lexical form (akin
to light verb constructions, e.g.make a speech),
and Krenn and Evert (2001) made no attempt to
learn the valence of the PP-verbs. One intriguing
finding of the research is that raw frequency was
found to be equivalent in performance to all the
statistical “association measure” extraction methods
tested. In our case, all tested methods were found
to well outperform the raw frequency baseline (V-P
FrequencyBASE) under corpus combination, except
for the selection of purely statistical methods which
dropped in performance as the corpus size increased.

Blaheta and Johnson (2001) developed an un-
supervised log-linear model for learning English
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Figure 1: Precision–recall curve over Brown
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Figure 4: Precision–recall curve over All

“multi-word verbs”, by which is meant both VPCs
and PVs. As Blaheta and Johnson (2001) blur the
distinction between VPCs and PVs, and make no
attempt to learn verb valence, direct comparison is
difficult. They claim a precision of 0.68 over the
top-100 multi-word verbs extracted by their method,
whereas our best-performing method produced a
precision of 0.48 over the top-100 items, as evalu-
ated in a deep lexical acquisition context with con-
siderably greater syntactic precision.

In related research on the deep lexical acquisi-
tion on VPCs, Baldwin (to appear) used taggers, a
chunker, a chunk grammar and a full parser to iden-
tify VPC instances, and combined the evidence from
the individual pre-processors together to produce a
supervised method. A significant divergence over
our research is the evaluation methodology, in that
Baldwin (to appear) took a gold-standard VPC lexi-
con and pre-annotated three corpora for actual oc-

currence of the VPC lexical items. In doing so,
Baldwin was able to filter out the effects of non-
corpus-attested lexical items in the reported results.
We have little sense of whether all 135 of our gold-
standard PVs occur in the three corpora, and whether
low-ranked items are due to a lack of corpus data or
some more fundamental shortcoming of our extrac-
tion methods. We leave this as an item for future
research.

While we have focused on unsupervised extrac-
tion methods in this research, there is no doubt that
we could benefit from combining our method with
supervised techniques for distinguishing between ar-
gument and modifier PPs (Buchholz, 1998; Merlo
and Leybold, 2001). It would be intriguing to inves-
tigate the interface between these two tasks, which
we leave for future research.

In conclusion, this paper has proposed a range of



unsupervised methods for performing the deep lexi-
cal acquisition of English prepositional verbs based
on corpus data. The proposed methods draw on a
combination of statistical and/or linguistic evidence,
and were found to combine together to produce an
extraction method with a Z-score of 11.3 and top-N
F-score of 0.45.

A Verb and Preposition Data

The 100 most-frequent verbs in the written compo-
nent of the BNC are:

accept, add, agree, allow, appear, apply,
ask, be, become, begin, believe, bring,
build, buy, call, carry, change, come, con-
sider, continue, create, decide, describe,
develop, die, do, draw, establish, exist, ex-
pect, fall, feel, find, follow, get, give, go,
grow, happen, have, hear, help, hold, in-
clude, increase, involve, keep, know, lead,
learn, leave, let, like, live, look, lose,
make, mean, meet, move, need, offer, pass,
pay, play, produce, provide, put, reach, re-
ceive, remain, remember, require, return,
run, say, see, seem, send, set, show, sit,
speak, stand, start, stop, suggest, take,
talk, tell, think, try, turn, understand, use,
walk, want, win, work, write

The 10 most-frequent transitive prepositions in the
BNC are:

as, at, by, for, from, in, of, on, to, with
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