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Abstract

SemEval 2016 task 11 involved determining
whether words in a sentence were complex or
simple for a cohort of people with English as
a second language. Training data consisted
of 200 annotated sentences, representing the
combined judgements of 20 human annota-
tors, such that if any annotator of the group
labelled a word as complex, then it was con-
sidered to be complex. Testing was based on
single annotator judgements. Our system used
a random forest classifier with a variety of fea-
tures, the most important of which were term
frequency statistics garnered from four large
corpora, and style lexicons built on two large
corpora. Minor features in the final system
include the presence or absence of words in
various readability word lists; many other fea-
tures we tried were not successful. Our rank-
ing amongst submitted systems did not reflect
the strength of our system, due to submitting a
far from optimal weighting between complex
and simple, but we show that when a more ap-
propriate weighting is used, our system ranks
amongst the best submitted systems.

1 Introduction

Most work related to readability measurement
(Chall and Dale, 1995) focuses on text-level assess-
ment, but it is clear that being able to determine
the difficulty of individual words is important to
both that task as well as related ones such as lexi-
cal text simplification (Shardlow, 2014). Although
some words can be considered conceptually difficult
— that is, a level of intellectual sophistication is re-
quired to grasp its meaning — for language learners,

it is more common for words to be considered dif-
ficult (or complex) simply because a reader has had
little or no exposure to them. This exposure may
depend on many different external factors related to
the person’s background, some of which may gener-
alize across other similar readers, while others may
be entirely idiosyncratic to the reader in question.
For example, those who study academic English, or
operate in an academic environment, have a different
vocabulary exposure to those who specialize in hos-
pitality English. Therefore, there is value in not only
trying to predict some prior difficulty of a word, but
also trying to generalize across readers in a similar
cohort. Task 11 of the 2016 SemEval competition
(Complex Word Identification) is aimed at address-
ing this challenge.

This paper describes our system for the task. We
commenced with previous work in word readability
scoring (Brooke et al., 2012) and stylistic lexicon
creation (Brooke and Hirst, 2013; Brooke and Hirst,
2014). For features, we drew on a diverse set of
corpus-based and human-derived metrics, and built
a random forest-based classifier. While a mistake
related to the proper distribution of complex versus
simple words prevented us from scoring amongst the
top teams in either of the evaluations metrics used in
this task, we show that by appropriate class weight-
ing with the same classifier and features, we can ob-
tain results on either metric that are competitive or
better than the best teams.

2 Background

The motivation for SemEval 2016 Task 11
was the need to automatically identify complex



words (Shardlow, 2013) for the task of automated
text simplification (Shardlow, 2014). However, the
modelling of word complexity and text complex-
ity has a long history, much of it using the term
readability, and intended for finding reading mate-
rial of an appropriate level of difficulty for children
and language learners (Chall and Dale, 1995). The
measurement of word readability, or lexical com-
plexity, is a fundamental component for a range of
techniques and their applications beyond automated
text simplification: text readability measurement is
used as a basis for automatically recommending
reading to language learners (Collins-Thompson and
Callan, 2004a); lexical complexity measurement can
also allow the automatic glossing of reading mate-
rial presented electronically (Walmsley, 2011), or
the display of text comprising a mixture of two lan-
guages (Uitdenbogerd, 2014).

Early work on readability resulted in a large num-
ber of measures being developed, typically based on
tests given to school-aged native speakers of En-
glish (Klare, 1974). The majority of these mea-
sures had two recognizable components: grammat-
ical difficulty and word difficulty. The word dif-
ficulty component of the measures had the follow-
ing varieties: inclusion in a list of generally known
words, such as the Dale-Chall measure (Chall and
Dale, 1995); word length in letters, such as the Au-
tomated Readability Index (Senter and Smith, 1967)
and Coleman-Liau formulae (Coleman and Liau,
1975); word length in syllables, such as the Flesch
and Kincaid formulae (Kincaid et al., 1975); the pro-
portion of words exceeding a word length threshold
in characters, such as Lix; and proportion of words
exceeding a length threshold in syllables, such as the
SMOG formula (Klare, 1974). Criticism of these
early readability measures included their inability to
capture conceptual difficulty (Gordon, 1980), lead-
ing the field to be abandoned to some extent un-
til the current millennium, in which corpus-based
techniques, language models, and classifiers be-
came popular, and large-scale corpora became read-
ily available (Collins-Thompson and Callan, 2004b;
François, 2009).

For second language learners, it has been ob-
served that higher frequency of exposure increases
the chance that a word is known, leading to a typi-
cal vocabulary knowledge profile in which the per-

centage of known words per 1000 in a ranked list by
frequency, monotonically decreases (Meara, 1992).
When language learning is optimized based on word
frequency, as is often recommended by researchers
of language acquisition (Sinclair and Renouf, 1988),
the effect may even be exaggerated.

3 Data

The training data released for this task included
about 200 sentences, in which each word token that
was not a proper noun was annotated as either com-
plex or simple. A word was considered complex
if any one annotator from a set of 20 annotators
marked it as such. We found many sentences be-
ing tagged entirely or almost entirely as complex,
for no obvious reason; for training, we excluded any
sentence where the number of complex words was
greater than or equal to the number of tagged words
minus 2, leading to 29 sentences being removed. We
also excluded from training any appearances of a
set of 140 closed-class function words, which we
always classified as simple; both test and training
data have words from our list that were tagged as
complex, but these appear to be mostly errors, and
in general we didn’t want our classifier focusing on
classifying extremely common words.

After applying these two filters, the total number
of tokens tagged complex in the training set was 427,
and the total number of tokens tagged simple was
1234, or roughly a 3 to 1 ratio of simple to complex.
By contrast, the test set, which was the result of an-
notation by individual annotators of about 9000 sen-
tences, had a ratio of simple to complex of almost 18
to 1 (after the common words are removed), which
is an extreme difference in class distribution; though
we expected to see this effect, when we prepared
our system we had no good way of estimating its
magnitude. Late in the competition, the organizers
released individual annotations which allowed for a
more accurate estimate of the expected class distri-
bution, but we became aware of that only after the
competition was over, and our work here is based on
optimizing using the initial class distribution.

4 Lists of Features

We divide our feature lists into three categories: ma-
jor features, minor features, and unused features.



Major features are those which we believe are es-
sential to the good performance of the model; minor
features were helpful in the version of the classifier
we used here, based on 20-fold cross-validation in
the training set, but the effect was fairly modest; and
unused features were not found to be helpful, but we
include them for completeness to give a full sense
of everything we tried. There are too many features
(and too many combinations) to offer up individual
numerical analysis of what worked and what didn’t.
Our features were selected by optimizing G-score
(see Section 6) with a 20-fold cross-validation of the
training set.

4.1 Major Features

Term frequency statistics We collected term fre-
quency statistics from four large corpora: the British
National Corpus (“BNC”: Burnard (2000)), the Gi-
gaword corpus (Graff and Cieri, 2003), the In-
ternational Conference on Web and Social Me-
dia (ICWSM) blog corpus (Burton et al., 2009),
and Project Gutenberg (read using the GutenTag
tool (Brooke et al., 2015)). We consciously chose
corpora that had significant variety with respect to
their genre, with the intent of allowing the classifier
to focus in on particular kinds of words that certain
groups might have trouble with. Note that we typi-
cally used the count for the specific word type, but
where it didn’t exist in the corpus we substituted the
lemma count, rather than giving a count of zero. All
of the corpora were of benefit to the final model.

Six style lexicons For the ICWSM and the Project
Gutenberg corpora, we built lexicons for six lexical
styles using the co-occurrence information in these
corpora. The six styles are: literary, abstract, objec-
tive, colloquial, concrete, and subjective; each style
for each corpus is an individual feature. We used the
seed set for the six styles from Brooke et al. (2013),
and the co-occurrence profile ranking approach from
Brooke and Hirst (2014). We chose these two cor-
pora because they are extremely large, varied in con-
tent, and we have used and evaluated them in other
work; highly constrained language like the newswire
text in the Gigaword corpus is unlikely to be of much
use for building stylistic lexicons in this fashion.

4.2 Minor Features

Dale-Chall List The presence or absence of the
word in the Dale-Chall list, a list of 3000 com-
mon words used in the Dale-Chall readability met-
ric (Chall and Dale, 1995).

Academic Word List The ranking of the word
on the 570-word Academic Word List, which di-
vides academic language into 10 frequency cate-
gories (Coxhead, 2000).

Beginner List A list of 4636 beginner words, in-
cluding words from the Dolch list (Dolch, 1936),
previously used as a training/test set in earlier lex-
ical readability work (Brooke et al., 2012).

Is Lemma A boolean feature indicating whether
a word is its lemma or not. For instance run is a
lemma but ran is not.

4.3 Unused Features

Document Frequency We tested document fre-
quency as a complement or alternative to term fre-
quency for the various corpora.

Average Sentence Length The average sentence
length of the documents the word appears in, for the
4 corpora used for term frequency. It was a use-
ful feature in our earlier work on lexical readabil-
ity (Brooke et al., 2012), and is an excellent read-
ability feature generally (Uitdenbogerd, 2005).

Word Length The length of the word, in charac-
ters, was useful in early iterations but not in the final
model.

Average Word Length The average word length
in the documents that the word appears in, for the
4 corpora, is another feature from Brooke et al.
(2012).

Formality lexicon The formality lexicon built
from the ICWSM corpus in Brooke and Hirst
(2014). We believe the information in it overlaps
considerably with the 6-style lexicon.

Readability rank The readability rank of words
as given by the model from Brooke et al. (2012).



Complexity lexicon Using the words from the
training set, we attempted to build a complexity
dictionary using the method of Brooke and Hirst
(2014). The results were not competitive when the
six-style lexicon was included.

Latinate affixes A boolean feature which indi-
cates the presence or absence of a Latinate affix,
which can indicate increased formality (Brooke et
al., 2010).

Number of Senses The number of senses of the
lemma of the word in WordNet (Fellbaum, 1998).

Hyphen fix For hyphenated words, derive all other
statistics using the first word in the hyphenation, in-
stead of the whole word.

Bigram style lexicon The features we use do not
distinguish between the word type in different con-
texts, so we cannot distinguish between word senses.
We saw examples of this in the data, such as the
word tried in the legal sense in was tried for mur-
der. We made an initial attempt at integrating this
information by building a bigram style lexicon, us-
ing the same method as the regular method, averag-
ing the styles of the two possible contexts, and either
replacing the word style or including it as a different
feature. However, performance was worse.

Is Cognate While not actually implemented, we
considered the possibility of using cognates, which
might allow us to discount otherwise complex words
which are easy for L2 speakers coming from Eu-
ropean language backgrounds because there is a
very similar word in other languages (Uitdenbogerd,
2005). However, the results of our early investiga-
tion suggested that cognates were not appearing with
greater frequency among the simple words than ex-
pected, and that therefore the language background
of the participants was probably not uniformly Eu-
ropean.

5 Classifier

Though rarely competitive on large feature sets,
a decision-tree-based classifier has several advan-
tages, being considered by some as the only true
off-the-shelf classifier (Hastie et al., 2008), in part
because it does not require the feature scaling that

is typical in linear classification models, and nat-
urally mixes boolean, ordinal and continuous fea-
tures without having to convert one to the other.
If the number of examples and features is low
enough, Random Forests — an ensemble classi-
fier that builds multiple decision trees using sub-
sets of the examples and features and then combin-
ing the individual votes — is a powerful classifier
with all the advantages of the basic decision tree (ex-
cept interpretability). On the basis of 20-fold cross-
validation over the training set, we found that it was
the best classifier among a wide range of options (in-
cluding all the other ensemble classifiers) that we
tested in Sci-kit learn (Pedregosa et al., 2011). We
tuned the parameters with an initial feature set, car-
ried out feature selection, and then tuned the pa-
rameters again, with very little further effect. The
only two parameters that were different to the de-
fault were the number of estimators (50); and the
maximum depth (3). We also tested with different
class weights to improve our performance with re-
gard to G-score, which is discussed in the next sec-
tion. Having class weights penalizes errors for a par-
ticular class more, which effectively forces the clas-
sifier to guess that class more often, shifting the class
distribution.

6 Evaluation Metrics

The evaluation for this task includes 3 basic met-
rics (precision, recall, and accuracy) and two com-
bined metrics based on them (F-score and G-score).
For precision and recall, the positive class is COM-
PLEX, and this is the basis for calculating F-score.
G-score, the primary evaluation metric for this com-
petition, is the harmonic mean of precision and accu-
racy, putting extra emphasis on recall for the COM-
PLEX class beyond that which is built into the ac-
curacy score. Relevant to this task, the effect of
G-score is opposite to the class imbalance problem
mentioned earlier: when training on a set where the
positive class is over-represented, the resulting clas-
sifier will do better on G-score than F-score because
it will tend to overestimate the instances of the pos-
itive class, improving recall.



Figure 1: Scores for various metrics for different weightings of the COMPLEX class

7 Results

Figure 1 shows the performance of our system for
the various metrics across different weightings of
the COMPLEX class. With regard to G-score and
F-score, our best submitted system is far from op-
timal, since we overestimated the effect of G-score,
and underestimated the influence of the class imbal-
ance between the training and test sets; we incor-
rectly put too much weight on the COMPLEX class,
which resulted in a G-score of 0.701 (12th ranked)
for the 1.5 weighting of COMPLEX, and 0.647 (19th
ranked) for the 3.0 weighting of COMPLEX. How-
ever, across all possible weightings, our best G-score
(0.773), which is our system without any weighting
at all, is tied with the second best G-score in the
competition (the best score was 0.774). If we put
more weight on simple words, we reach the maxi-
mum F-score of 0.355 when the ratio is (roughly) 3
to 1 in favor of simple words; this F-score is better
than any other reported F-score (the best F-score of
a submitted system is 0.353), though we note that
teams might have been more focused on optimizing
G-score, since it was the primary metric. Accuracy
is maximized simply by minimizing the number of
COMPLEX guesses, and in fact guessing only SIM-
PLE will net an accuracy of 0.953, which is impossi-
ble for our system to beat.

Table 1 shows the results of a small feature ab-

Features G-score F-score
All Features 0.773 0.355
No term frequency 0.550 0.001
No 6-style lexicon 0.748 0.349
No minor features 0.772 0.347

Table 1: Feature ablation

lation study using the best system with regard to
each the two combined metrics (no weighting for
G-score, 1/3 weighting for F-score); results were er-
ratic for less than optimal values. Term frequency
information is clearly the most important source of
information for deciding complexity, but we also see
improvements due to the stylistic lexicons built us-
ing co-occurrence information, and the minor fea-
tures. The effects are not consistent with respect to
degree across the two metrics, likely because differ-
ent feature sets result in substantially different class
distributions, which in turn have very different ef-
fects on G-score and F-score.

8 Discussion

Our results using the unweighted model put us
among the best teams in the competition, though in
fact there are 6 other teams with G-scores within
0.01 of each other, and what we know about the ef-
fects of weighting should make us cautious about
coming to any strong conclusion about which of



these systems (or other systems, for that matter) are
better. From our perspective, it is unfortunate for
us that the organizers created a situation where the
class distribution in the test set was very unclear.
As it happens, the use of G-score almost exactly
counters the effect of the class imbalance (in fact,
it seems as if G-score may have been selected ex-
actly for this purpose), such that a classifier built on
the training data with an eye to F-score will do well
with regard to G-score over the testing data (though
not the training data), but it didn’t seem obvious to
us that this would be the case. More generally, we
wonder whether some kind of ROC metric might not
be more appropriate for this task. In our opinion,
the quality of a model of complexity is orthogonal
to producing a class distribution which optimizes a
particular metric, and collapsing the two just creates
confusion and might lead us to overlook otherwise
good approaches.

Most of our performance seems to be due to term
frequency and word co-occurrence information from
a set of four large corpora. Although using multiple
corpora was helpful, we actually rather doubt that
our model is learning much that is particular to the
group of people involved; more likely it is learning
a more general model of word difficulty. Choosing
the correct proficiency level is primarily a matter
of choosing the best class distribution (via weight-
ing); if one has individual annotations of the target
population (which we didn’t use, but were eventu-
ally made available), this is relatively straightfor-
ward. What would have been more interesting is
if the task had involved multiple groups with very
distinct characteristics (for example, two very differ-
ent L1 language backgrounds, or L1 children versus
L2 adults), so that a good model would have had to
truly adapt to the specific characteristics of different
groups to be successful. It would also be interest-
ing to see if we could build models that can adapt
to individuals, predicting words that a reader would
or wouldn’t know based on a small sample of words
tagged by them only. Such a setup might bring us
closer to the goals that motivate the task.
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