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Abstract The development of precision grammars is an inherently resource-intensive
process; their complexity means that changes made to one area of a grammar often
introduce unexpected flow-on effects elsewhere in the grammar which may only
be discovered after some time has been invested in updating numerous test suite
items. In this paper, we present the browser-based gDelta tool, which aims to pro-
vide grammar engineers with more immediate feedback on the impact of changes
made to a grammar by comparing parser output from two different grammar ver-
sions. We describe an attribute weighting algorithm for highlighting components
of the grammar that have been strongly impacted by a modification to the gram-
mar, as well as a technique for clustering test suite items whose parsability has
changed, in order to locate related groups of effects. These two techniques are used
to present the grammar engineer with different views on the grammar to inform
them of different aspects of change in a data-driven manner.

1 Introduction

In this paper we investigate techniques for generating feedback on the impact
of changes made to precision grammars, and present the gDelta tool, which is
intended to combat a significant drawback of linguistically accurate hand-crafted
grammars — the considerable amount of time and resources involved in their
development. gDelta is intended for use during the grammar development cycle,
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to be presented to grammar engineers as immediate feedback on the impact of
a change or set of changes made to a grammar. This feedback is intended to
assist grammar engineers in more readily understanding how the grammar has
been affected, thus reducing the amount of time required to track down issues
introduced by changes to the grammar.

Previous work that aims to provide feedback for use in the grammar engineering
process (Oepen and Carroll 2000; van Noord 2004; Waterman 2009) has focused on
the analysis of parser output from just one version of a grammar. Our approach
differs in that it highlights the differences between two versions of a grammar:
one from before and one from after a change made to a grammar. This work can
be conceptualised as the development of a diff tool that operates over parser
output from two different versions of a grammar run across the same corpus.
Rather than trying to improve upon or replace existing development tools, we
see this tool as being complementary, filling a gap in the grammar engineering
toolchain. gDelta was developed specifically for use with grammars developed
within the DELPH-IN community, 1 however the underlying techniques that drive
gDelta and are described in this article are largely framework agnostic, and could
be readily applied to other grammar engineering frameworks. Additionally, these
techniques work cross-linguistically, as demonstrated by the application of gDelta

to grammars of English and Japanese.
The remainder of this paper is structured as follows. Section 2 briefly expands

upon the concept of a precision grammar and outlines the grammar engineering
process, before presenting an overview of existing tools available to grammar en-
gineers. Section 3 outlines our methodology, including the resources we used and
the underlying techniques that gDelta makes use of. Section 4 provides a walk-
through of the output that gDelta generates and outlines how it is intended to
be used. Section 5 outlines a small-scale evaluation of the techniques introduced
in this paper and contains a discussion of the results. Section 6 provides a brief
overview of the implementation details of gDelta, along with the requirements
for running gDelta and how to access the source code. Section 7 identifies further
work to be pursued in his area, and Section 8 concludes the paper.

2 Background

2.1 Grammar Engineering

Precision grammars are motivated by the desire for automated and accurate lin-
guistic analysis of natural language. They are usually based upon or heavily in-
fluenced by formal theories of syntax developed within the field of linguistics.
The syntactic theory that informs the DELPH-IN grammars used in this paper is
Head-driven Phrase Structure Grammar (HPSG: Pollard and Sag 1994). Examples
of other grammar engineering approaches include the CoreGram project (Müller
2013), also based on HPSG; the ParGram project (Butt et al, 1999; Butt et al,
2002) based on Lexical Functional Grammar (Dalrymple 2001); the eXtensible

MetaGrammar tool (Crabbé et al 2013), which can be used to create tree-based
grammars such as Tree Adjoining Grammar (Joshi and Schabes 1997) and In-
teraction Grammar (Guillaume and Perrier 2009); and also DotCCG (Baldridge

1 http://www.delph-in.net
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et al 2007), a tool used to develop Combinatory Categorial Grammars (Steedman
2000).

These foundations in formal syntax mean that precision grammars all share
the property that they draw a sharp distinction between sentences that are gram-
matical and those which are not. Compared with induced grammars — as are
used in most treebank parsers — precision grammars tend to generate far more
detailed analyses and are able to capture much more complex linguistic construc-
tions (Bender et al 2011). Precision grammars are also usually able to capture the
underlying semantic structure of language. It is for these reasons that the use of
precision grammars to perform natural language parsing is often referred to as
deep parsing.

Grammar engineering is the process of developing and extending the coverage
of precision grammars as well as improving the quality of existing analyses. It is
a resource-intensive process, requiring grammar engineers with both a linguistic
background as well as an understanding of the formalism in which the grammar
has been implemented. A number of factors combine to make grammar engineering
a slow and time-consuming process. One is the considerable size and complexity
of these grammars, with the various components involving a high degree of in-
teraction between each other, meaning that modifications made to one part of
the grammar can often produce unexpected flow-on effects in other areas of the
grammar. Another factor is the high degree of accuracy that is demanded of these
grammars. Over time, as improvements are made and the grammar is expanded to
handle more linguistic constructions, it is important that the validity of analyses
produced by the grammar does not degrade, and that the grammar does not stop
being able to parse constructions that it once could.

Just as in software engineering, the grammar engineer has a number of tools
available to provide quality assurance. In grammar engineering, the practice of
monitoring the quality of analyses produced by the grammar is referred to as
grammar profiling. This involves the maintenance of test suites which facilitate the
monitoring of various signals, providing a means of ensuring that the grammar does
not regress. In the DELPH-IN community, test suites are maintained through the
use of profiles, which contain sets of items and information pertaining to how the
grammar performed over the items. An item consists of a string from the target
language, which, depending on the purpose of the test suite, can be naturally
occurring or constructed to illustrate a particular phenomenon, and can also be
marked as grammatical or ungrammatical. One of the aims of the TSNLP project
(Oepen et al 1997), which the DELPH-IN profiling technology originates from, was
to additionally annotate items with grammatical phenomena they exemplified as
a means of further evaluating and debugging the performance of grammars. The
complexities involved in creating and maintaining such phenomenon annotations
have, however, meant that this practice has not been adopted.

The most prominent aspect of the grammar that must be monitored is the
range of linguistic phenomena and lexical items that it is able to handle — the
coverage of the grammar. This is monitored by test suites constructed to track the
extent to which a grammar undergenerates. Test suites can also contain ungram-
matical or negative items used to test the degree to with a grammar overgenerates.
In addition to these signals, the number of analyses per item is also monitored.
While it is true that ambiguity is an inherent feature of language that cannot be
eliminated, it is important to remove spurious ambiguity where possible. Gram-
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mar profiling tools also provide information regarding changes in the operational
performance of the grammar, such as the time taken to process test suites and
the number of operations required for parsing. Just as with testing in traditional
software development, unexpected changes in any of these aforementioned statis-
tics are potential symptoms of introduced errors. For further discussion of the
requirements of grammar profiling tools, see Oepen and Flickinger (1998).

A limitation of grammar profiling tools is that they are not able to detect the
misanalysis of items, i.e. when the analysis of an item does not match its structure.
This is of particular concern when developing precision grammars as their archi-
tecture tends to be complex, reflecting the inherent complexity of language, and
just as linguistic phenomena interact with each other, so too do the implementa-
tions of their analyses. This means that a modification to a grammar pertaining to
a particular phenomenon can often result in unanticipated flow-on effects in other
areas of the grammar.2

A resource that can be used to monitor the accuracy of analyses is the treebank,
a corpus annotated by selecting a good analysis from the alternatives produced
by the parser. Whenever a change is made to the grammar that alters the stored
analysis of a treebanked item, the analysis provided by the previous version of
the grammar can be used to verify that the change has not led to a degrada-
tion in quality. When using treebanks for this purpose, a necessary step in the
grammar engineering cycle is the updating of items affected by the change to the
grammar. This is performed to catch errors resulting from the change, and also
to periodically synchronise the treebank to the current state of the grammar. In
the DELPH-IN grammar engineering pipeline, this dynamic treebanking method-
ology (Oepen et al 2002) takes advantage of previously recorded annotations by
automatically applying (where possible) the outcomes of decisions regarding the
resolution of local ambiguity. This greatly reduces the number of decisions an an-
notator must make following a change, however it remains the case that following a
significant change to a grammar, the treebanking stage can be a potentially labour
intensive process.

2.2 A Gap in the Toolchain

Grammar profiling and treebanking are both vital to the grammar engineering
process, each representing opposite extremes in the level of feedback they pro-
vide: grammar profiling providing immediate but course-grained feedback on the
coverage and performance of the grammar, and treebanking providing slower, fine-
grained feedback on an item-by-item basis. The grammar profiling stage can locate
glaring problems such as coverage levels suddenly dropping or not changing when
expected to, but the detailed level of feedback provided by treebanks is crucial to
catching unanticipated problems not visible in the grammar profiling stage, as well
as more generally building up a picture of how the change impacted the grammar.
Unfortunately, the inspection and updating of treebanks can be a slow process,

2 In the DELPH-IN grammar engineering formalism, rules and lexical entries can inherit
constraints from multiple supertypes. This allows for commonly occurring constraints to be
collected together, which is desirable both from the point of view of capturing linguistic ab-
stractions and also avoiding repetition, but at the cost of increasing the chances of surprises.
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and an all too real possibility for the grammar engineer is locating a serious prob-
lem after considerable time has been invested in updating the treebank. When this
occurs, the grammar engineer must resolve the problem in the grammar and start
the process over again.

We argue that it would be desirable for there to be a tool which offers a middle
ground between these two levels of feedback, one which makes the impact of the
change more transparent earlier on in the grammar engineering cycle, helping the
grammar engineer more quickly gain a superficial understanding of the impact of
the change over the test suites. In the next section, we outline a range of existing
tools and approaches that grammar engineers could potentially use to gauge the
impact of a change made to a grammar. Each approach is assessed on the basis of
how well it can be used to provide the desired kind of feedback.

2.3 Previous Work

van Noord (2004) proposed a grammar error mining technique for detecting errors
in grammars. This involves assigning a parsability score to each word n-gram
in a corpus, based on the ratio of the number of times each n-gram occurs in
successfully parsed items over the number of items it occurs in the whole corpus.
The end result is a list of n-grams, ordered by parsability, with the lowest scoring n-
grams representing those most likely to be indicative of problems in the grammar.
This technique has been further improved by Sagot and de La Clergerie (2006)
and de Kok et al (2009). An advantage of this error mining approach is that the
only input required is a binary success or failure value for each item, meaning that
it is agnostic towards the implementation of the parser and grammar. A drawback
to this approach, however, is that the results are presented in terms of surface
string n-grams, whereas information pertaining to the internal components of the
grammar would be more informative to the grammar engineer. This is indicative
of the larger problem, which is that without an analysis from the grammar, the
error mining input is limited to unstructured text.

Two error mining approaches which do utilise structured input to yield further
insight are that of Goodman and Bond (2009) and Gardent and Narayan (2012).
Goodman and Bond (2009) introduce Egad, a tool which leverages the ability of
precision grammars to both generate and parse in order to identify errors involved
in generation. For each successful parse, they use the corresponding semantic form
to generate the set of possible paraphrases, flagging a sentence as a failure if the
original surface form cannot be generated. They then use a maximum entropy
classifier to find n-grams over paths in the derivation tree which are predictive of
generation failure, resulting in a better picture of where the underlying error in the
grammar might lie. Similarly, Gardent and Narayan (2012) extend the error mining
approach of de Kok et al (2009) to develop a suspicion measure for dependency
subtrees, applying this to input trees for which they are unable to generate a
surface form.

These automated approaches towards error detection in grammars are useful
for directing the development of a grammar — they are good at locating gaps
in parsing and generation coverage — however they are ill-suited to providing
feedback on immediate changes made to a grammar, as there is no guarantee that
the problems they report will be related to changes just made to the grammar.
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This is due to the use of a single version of the grammar in the input: without
comparison to a previous version, there is no bound on how far back the errors
could have been introduced, nor are these introduced errors distinguished from
known gaps in the grammar.

The tool used for grammar profiling and treebanking in the DELPH-IN com-
munity is a software package called [incr tsdb()] (Oepen and Carroll 2000). It
facilitates the construction of test suites designed to measure overgeneration and
undergeneration in the grammar, as well as changes in the number of analyses pro-
duced per item. [incr tsdb()] is able to be used in a comparative mode, comparing
the coverage and performance of two different versions of a grammar. This makes
it a valuable tool for gaining immediate feedback on the impact of a change just
made to a grammar. However, it suffers from the previously-mentioned limitations
of grammar profiling tools, i.e. that this information offers a coarse-grained level
of feedback on the impact of the changes made.

A tool which can be used to shed more light on changes in terms of the underly-
ing properties of the grammar, is Oceanography (Waterman 2009) from the XLE

grammar development environment (Crouch et al 2014). Oceanography works by
processing parser output and collating statistics such as the counts of construc-
tions and properties and the context in which they occurred. Dost and King (2009)
describe making use of Oceanography to gauge the impact of modifications made
to a grammar by comparing the relative frequencies of the modified constructions
between the initial version of the grammar and the modified version. Unexpected
changes in frequencies of constructions are deemed to be symptomatic of potential
problems introduced by the change. This comparative use of Oceanography be-
tween two different versions of a grammar comes the closest to meeting the desired
objectives.

2.4 Filling the Gap

In order to try to fill this gap in the grammar engineering toolchain, we have de-
veloped gDelta, which, like the parse-result mining of Oceanography, involves
processing output produced by the parser. Our approach is similar to the com-
parative use of Oceanography in Dost and King (2009), but improves upon this
approach, firstly through the use of a single invocation and unified output, re-
moving the need for manual comparison of two separate runs over two grammar
versions, and secondly by performing analytics over the combined results in order
to highlight significant changes between the parse results.3 Unlike grammar error-
mining techniques, gDelta does not assign judgements of suspicion to results, but
instead attempts to provide a sufficient amount of diagnostics on the impact of
the changes between the two grammar versions, from which the grammar engineer
can draw their own conclusions.

Rather than trying to improve or replace any of the existing tools and ap-
proaches mentioned above, we see gDelta as being complementary, representing
a new addition to the grammar engineer’s toolchain with a distinct use-case from
the existing tools. More concretely, this use-case is to provide an intermediate level

3 Note that it is not possible to perform direct comparative evaluation of gDelta and
Oceanography, as they have been developed to work with different grammar engineering
frameworks (the DELPH-IN stack and XLE, respectively).
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of feedback, allowing grammar engineers to identify unexpected and potentially
detrimental consequences of their change before commencing manual inspection
of changed test items.

3 Methodology

For the development of gDelta, we used the Japanese grammar Jacy (Siegel
2000) and the LinGO English Resource Grammar (ERG: Flickinger (2002)), both
HPSG-based precision grammars developed within the DELPH-IN community.
Instead of creating our own changes to these grammars from scratch, we used real
changes made in the course of the development of these grammars. This ensured
we would be working with sample changes of the kind that would occur during the
grammar engineering process. For our test corpus, we selected test suites used in
the development of the grammars. In the case of Jacy, this was the Tanaka Corpus
(Tanaka 2001) and for the ERG, this was a selection of different corpora found
in the LinGO Redwoods treebank (Oepen et al 2002) as well as the WeScience
treebank (Ytrestøl et al 2009).

3.1 Preliminary Steps

For each change to a grammar being investigated, we began by taking two ver-
sions of the grammar: the initial version of the grammar (G) and the modified
version (G′). These were then used to parse the same corpus using the PET run-
time parser (Callmeier 2002). In order to keep the run-time of the parser within
reasonable limits (with an eye to real-time feedback in live grammar engineering
environments), we restricted the analyses the parser returned for each item to the
10 best according to the parse selection model. Limiting the number of analyses to
be found (while still being able to determine the total number of analyses in the
parse forest) improves the parsing speed due to the selective unpacking (Zhang
et al 2007) used by PET.

For each grammar pair (G,G′) we then created three sets of parse results: (1)
parse results for items which parse with G but not G′ (parse → no parse); (2) parse
results for items which do not parse with G but do with G′ (no parse → parse);
and (3) parse results for items that parse under both versions of the grammar
but receive different numbers of analyses in their parse forests (parse → parse). In
the latter case, which contains analyses from both versions of the grammar, we
subdivided this set into a further two: (1) analyses from G (parse → parse); and
(2) analyses from G′ (parse → parse). These four categories are intended to reveal
different kinds of effects resulting from changes to the grammar and are the basis
of much of gDelta’s output.

3.2 Attribute Extraction

As was argued in Section 2, in order to gain the kind of feedback the grammar en-
gineer is after, it is necessary to leverage more information than just the parsability
of an item. Just as Oceanography does, we look for further information in the
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sb-hd mc c

sp-hd n c

the 1

The

n sg ilr

dog n1

dog

w period plr

v pst olr

sit v1

sat.

Fig. 1 Derivation tree produced by the ERG for the sentence The dog sat.

dog n1 := n - c le &
[ ORTH < "dog" >,

SYNSEM [ LKEYS.KEYREL.PRED " dog n 1 rel",
PHON.ONSET con ] ].

Fig. 2 The lexical entry for the word dog in the ERG

sb-hd mc c

sp-hd n c

d - the le

The

n sg ilr

n - c le

dog

w period plr

v pst olr

v - unacc le

sat.

Fig. 3 The derivation tree from Figure 1 with lexical entries replaced by their lexical types

output produced by the parser for successful parses. PET produces a number of
different outputs for successful parses, each containing different kinds of structures
built up during the parsing process. For our investigation we used the derivation
trees generated by the parser, which represent the syntactic analysis of successfully
parsed items.

An example derivation tree for an English phrase parsed with the ERG can be
seen in Figure 1. In this example, just the labels of the nodes are shown, which
are — with the exception of the terminals and preterminals — the identifiers of
the rules used to derive the subtree at each node.4 In reality, each node stands
for an elaborated attribute value matrix, containing all the constraints involved in
building up the derivation for that subtree.

We extracted the rule identifiers from nodes of the derivation trees to be used
as the attributes for use in gDelta. In the case of the leaves of the tree, extracting
the surface form of the word would have led to data sparsity problems due to the
infrequent occurrence of most words. This would also likely have occurred had we
used the preterminal nodes, which correspond to the lexical entry for that word.

4 An interactive demo of the ERG can be found at http://erg.delph-in.net/logon, where
rule identifiers can be viewed by hovering over nodes of parse trees from successfully parsed
sentences.
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Instead, we extracted the lexical type of each lexical entry, requiring a simple
lexicon lookup. In accordance with the highly lexicalised nature of HPSG, it is
a convention of DELPH-IN grammars that lexical entries inherit most of their
constraints from a lexical type, and contain little information themselves. Figure 2
shows the lexical entry for the word dog in the ERG. It is composed of a lexical
type, n -c le, which abstracts the constraints common to count nouns, as well
as a small amount of information specific to the word dog. Figure 3 shows the
derivation tree from Figure 1 with lexical entries replaced by their lexical types.

In the context of HPSG, these two kinds of attributes (rule identifiers and
lexical types) are associated with phrases and words — subtypes of the sign type,
which pairs constraints on both phonological form and syntactico-semantic func-
tion. The type hierarchy, which forms the backbone of DELPH-IN grammars, also
includes categories of types that abstract functionality different to that of sign
types. Limiting gDelta’s input to the portion of the type hierarchy which can
be readily extracted from the derivation trees has the advantage of making this
approach more portable across other grammatical frameworks as well as being
simpler to implement since consultation of the grammar itself is not required. In
Section 7 we discuss potential improvements to gDelta that involve expanding
the input to more of the type hierarchy as well as other data structures produced
by the parser.

A further issue that arose in the attribute extraction process was how attributes
are extracted from items that yield more than one analysis, which for non-trivial
input is the norm rather than the exception. One possibility would be to extract the
union of attributes across all of the recorded analyses. But since the probability
assigned to some of the analyses by the parse selection model could be quite
low, this may in fact result in a poorer reflection of how the parse results have
been affected by the change. Since it is not clear at which point analyses should
be excluded from contributing their attributes, we left this as a user-definable
parameter to gDelta, with the default being to use only the single best analysis.

The attribute extraction step is the one component of the gDelta methodology
which is DELPH-IN/HPSG specific. In order to apply a gDelta style approach to
other grammatical frameworks, a procedure for extracting appropriate attributes
from derivation trees—or indeed other data structures—must be developed. The
attribute ranking and clustering algorithms described in the remainder of this
section are agnostic with respect to the underlying grammar framework, only re-
quiring a list of attributes and their item counts across the parser output produced
by the two versions of the grammar.

3.3 Attribute Ranking

Having extracted attributes from the derivation trees of parsed items, we then
needed a means of highlighting attributes impacted by the changes made to the
grammar. This was first attempted by ranking attributes by the relative change
in the number of parsed items that contained the given attribute for each ver-
sion of the grammar, sorted in either ascending or descending order, depending
on whether decreases or increases were being investigated. A problem with this
ranking was that attributes considered to be particularly relevant to the change
were sometimes only found in a small number of items, meaning they were ob-
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scured by changes in more commonly-occurring attributes. When developing the
item clustering approach outlined in Section 3.4, we also noticed that using the
change in item frequency for the weighting of attributes biased the results towards
lower numbers of clusters. We combated these two problems by using an alterna-
tive attribute weighting function based on the difference in the inverse document
frequency (IDF) of attributes. Since the IDF of attributes will be low for those
that occur frequently in a set of parse results and high for those that occur in-
frequently, the difference in IDF is effectively the change in rarity of attributes
between parse results.

The IDF of attribute i in grammar G is given by Equation 1. PG is the number
of parse outputs for grammar G and pi,G is the number of parse outputs that
contain attribute i; the denominator is offset by one to avoid zero-division errors
when the attribute does not occur in any of the parsed items. This weighting
function for an attribute i is given by Equation 2, where G is the initial version of
the grammar and G′ is the new version of the grammar.

IDFi,G = log
|PG|

1 + |{pi,G : fi ∈ pi,G}|
(1)

Wi = IDFi,G′ − IDFi,G (2)

An issue we discovered with this weighting function is that when the frequency
of an attribute is not affected by a change, the attribute can receive a non-zero
weighting due to the fact that the total number of items parsing will likely change
between grammars, yielding a change in IDF. This would be confusing for the user,
suggesting an impact upon some attributes where none exists. This was solved by
modifying the IDF calculation to use the total number of items parsing across both
versions of the grammar, which has the effect of assigning unchanged attributes
a weight of zero, while preserving the relative weighting of other attributes. The
modified IDF formula is given in Equation 3.

IDFi,G,G′ = log
|PG|+ |PG′ |

1 + |{pi,G : fi ∈ pi,G}|
(3)

Armed with the item frequency and IDF-based weighting functions, rankings
could then be created across the sets of attributes extracted from the four different
categories of parse change. Table 1 and Table 2 show attribute rankings for the
categories of no parse → parse and parse → no parse respectively, comparing the
top 10 changes across both weighting functions. These rankings were generated
from a change made to Jacy during the course of its development which involved
extensive changes to the handling of verb phrases. The rankings in Table 1 are
sorted in descending order, while those in Table 2 are sorted in ascending order,
reflecting the direction of change that is of interest for each category. It should be
noted that while the set of attributes for each parse change category only includes
attributes found in items from that category, their changes in item frequency and
IDF are calculated globally across all items, meaning that it is possible to see,
for instance, attributes in the no parse → parse category with decreases in item
frequency and IDF weightings.

Looking at Table 1, which shows attributes extracted from items which now
parse as a result of the changes made to the grammar, we see in Table 1a that
ranking by item frequency places the attribute vn-light-rule at the top of the
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∆ Item frequency Attribute
1 1566 vn-light-rule
2 1363 vstem-vend-rule
3 130 adversative-trans-pass-passcmorph-end-lex
4 76 i-adj-neg-stem-lex
5 69 v-past-tense-end-minusahon-tmorph-lex
6 59 caus-trans-obj-passcmorph-end-lex
7 58 hi-adj-s-rule
8 56 caus-intrans-scope-passcmorph-end-lex
9 51 kit-lexeme-c-stem-infl-rule

10 51 head-complement2-rule

(a) Change in item frequency weighting

∆ IDF Attribute
1 2.424 caus-intrans-scope-passcmorph-end-lex
2 1.525 garu-sbj-change-rule
3 1.382 v8-c-minusshon-stem-lex
4 1.332 caus-trans-obj-passcmorph-end-lex
5 1.039 adversative-trans-pass-passcmorph-end-lex
6 0.667 ke-lexeme-infl-rule
7 0.603 vn-light-rule
8 0.404 comp-prpstn-lex-questarg
9 0.404 hes-lex

10 0.404 pure-aspect-progressive-shon-c2-stem-lex

(b) Change in IDF weighting

Table 1 Top 10 attribute rankings generated from items in the no parse → parse category
from a change made to the Jacy grammar during its development

ranking, being found in 1566 more parsing items than before the change, followed
by vstem-vend-rule, with a change of 1363 parsing items. Both these attributes
were directly altered by the grammar engineer, with the increases in other at-
tributes being due to interactions with changes made to the grammar. Looking
at the ranking generated using the IDF weighting in Table 1b, we see that us-
ing a weighting function based on the change in rarity of attributes has moved
vn-light-rule down into the seventh position, and vstem-vend-rule has com-
pletely dropped out of the top 10.

Comparing the rankings produced using the two different weightings, we see
that attributes occurring higher in the item frequency-based ranking tend to be
pushed down in the IDF-based ranking, replaced by changes in rarer attributes.
One of the effects of this emphasis on subtler, more nuanced changes found in the
IDF ranking is that of pushing lexical types, whose distribution exhibits more of
a long tail, higher up the ranking. We see these two different types of ranking as
being complementary, with the item frequency weighting allowing the grammar
engineer to build up a broad picture of how the attributes were affected, and with
IDF-based weighting highlighting potentially interesting attributes from the long
tail of item frequency changes. Within the final gDelta interface, these two signals
can be combined, by — for instance — using item frequency as the primary sort
key and the IDF weighting as a secondary sort key.

During the development of gDelta, we noticed that there were occasions where
it was useful to collapse increases and decreases in attributes together. When
viewing attribute rankings for the category no parse → parse, positive changes are
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∆ Item frequency Attribute
1 -3037 aux-vend-rule
2 -643 head-specifier-rule
3 -121 lightverb-pass-end-lex
4 -36 vend-vend-rule
5 -28 pure-aspect-progressive-v-stem-lex
6 -26 topic-nobj-lex
7 -25 te-adjunct-lex-t
8 -24 vn-intrans-lex
9 -13 v-finite-present-plain-negative-end-lex

10 -12 rel-cl-sbj-gap-rule

(a) Change in item frequency weighting

∆ IDF Attribute
1 -6.329 aux-vend-rule
2 -4.642 lightverb-pass-end-lex
3 -2.383 vn-light-obj-change-rule-noun
4 -0.404 frg-pp-int
5 -0.404 pron-thirdsgneut-ref-lex
6 -0.179 light-shon-c-stem-lex
7 -0.124 aspect-c-stem-lex
8 -0.102 infinitive-lexeme-v-infl-rule
9 -0.079 perspective-arg1emp-shon-c-stem-lex

10 -0.067 adv-p-lex-np-nonexh

(b) Change in IDF weighting

Table 2 Top 10 attribute rankings generated from items in the parse → no parse category
from a change made to the Jacy grammar during its development

of particular interest, and conversely, negative changes are more interesting in the
case of the parse → no parse category. But in the case of the remaining two parse
change categories, which contain items with changes in the number of parses they
received, both positive and negative changes are potentially relevant. Rather than
introduce an additional signal via another weighting function, we opted to modify
the existing IDF weighting function to be the absolute magnitude of the change.
This version of the IDF weighting function (as given in Equation 4) is the one
used in gDelta5 and referred to throughout the remainder of this paper.

Wi = |IDFi,G′,G − IDFi,G,G′ | (4)

3.4 Item Clustering

Information on differences in the correlation between parsability and individual
types is a valuable aid in gisting how the grammar has changed. However, the
interaction between attributes impacted by the grammar change is often subtle,
and only truly understood relative to different combinations of attributes and the
corresponding items. As a second diagnostic facet of gDelta, we therefore cluster
items based on parsability data and the attributes present in the associated deriva-
tion tree, and present the items associated with each cluster. As with the attribute

5 Since it is not clear that this will always be the most useful means of presentation, we also
made this a system parameter, which allowed for the selection of the signed version of the IDF
function — rather than the unsigned default — to be used throughout gDelta.
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rankings, the clustering is performed separately across the different categories of
parse change.

For the underlying clustering algorithm, we chose k-means clustering for its
simplicity and run-time efficiency. k-means clustering is an iterative algorithm
which partitions a set of observations into k clusters. In each iteration, every
observation is assigned to the cluster with the closest mean, and the mean of each
cluster is subsequently updated. This process of assign-and-update is repeated
until the clusters converge and the assignment of observations no longer changes.
We selected Euclidean distance as the metric for calculating distances between
points. To generate the item clusters, each item is first converted into a weighted
attribute vector in n-dimensional space, where n is the total number of attributes
located across all parse results from both versions of the grammar.

As previously mentioned, we found that using the change in item frequency to
weight the attributes had the effect of strongly biasing the results towards lower
numbers of clusters. We suspect this was caused by large changes to frequently oc-
curring attributes dominating other changes, resulting in item vectors lying close to
each other in Euclidean space and thus not being readily separable. The IDF-based
weighting function solves this problem by picking up on more nuanced changes to
attributes. Item vectors were then weighted by assigning, for each attribute, the
value returned by the function given in Equation 4 if the attribute occurred in the
derivation tree for the item, and zero if it did not.

A decision to be made when using k-means clustering is how the centroids of the
clusters are initialised. Since k-means is an expectation-maximisation algorithm,
there is no guarantee that the final solution will be the global optimum. If a poor
selection of initial seeds is made then the solution may be a local optimum a long
way from the global optimum. We tried to reduce the likelihood of this by selecting
centroids with a good spread across the entire set of observations. This was done
by pseudo-randomly selecting a point to be the centroid of the first cluster, then
selecting each other initial centroid to be the furthest point from the mean of the
seeds already selected, until k points are selected.

One of the drawbacks of k-means is that the value of k must be specified in
advance. Since the grammar engineer does not know how many types of changes
there may be in the parse results, the best value of k is unknown. This problem is
commonly solved by repeatedly performing the clustering across a range of values
of k and selecting the value which yields the best clustering. One way of doing
this is by selecting k such that it minimises the combined sum of the squared
errors across each cluster, since the goal is to minimise the distance from each
observation to its centroid. This approach has the drawback of favouring higher
numbers of clusters and requires the introduction of a penalty for each increment
of k to offset this bias.

We chose to compare the quality of the clustering for different values of k using
the Silhouette algorithm (Rousseeuw 1987), which provides a means of evaluating
the fit of an observation within a set of clustered observations. This technique
involves the calculation of a single score for each observation, which is a combined
representation of the internal similarity with other observations in the same cluster
and of the dissimilarity with all other observations outside the cluster. The formula
for calculating the Silhouette score of an observation i is given in Equation 5. a(i)
is defined as the mean distance from i to all other observations in the same cluster
and b(i) is defined as the mean distance from i to all observations in the cluster
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closest to the cluster i occurs in. This produces Silhouette scores ranging from
−1 to 1, with −1 indicating poor clustering and 1 indicating good clustering. The
average Silhouette score for a whole cluster can then be computed and in turn,
the average across all clusters, resulting in a final value representing the quality
of the overall clustering.

s(i) =
b(i)− a(i)

max
(
a(i), b(i)

) (5)

The final clustering is done by performing k-means for values of k between 2
and 6, and selecting the value which resulted in the highest Silhouette score. A
maximum of 6 was selected after repeated observations across different grammars
and grammar changes showed that the number of clusters selected rarely exceeded
4. The result is a set of clusters for each of the parse change categories, with
each cluster intended to capture a group of related effects on the parse results. In
order to characterise the nature of these effects, the closest item to the centroid
of each cluster is taken as the exemplar and displayed with the cluster. In order
to make more transparent the changes in attributes that the clustering has picked
up on, we include in the clustering visualisations the top-ranked attributes of the
exemplar items, as well as statistics intended to illustrate their relevance to the
cluster. An example of the clustering output is provided in Section 4.3, along with
an explanation of the additional signals provided in the clustering visualisations.

4 gDelta Walkthrough

The output produced by gDelta consists of a series of HTML pages for viewing
within a web browser. All data required for displaying the output is contained
within the HTML files, so it can be viewed offline and independently of the gram-
mar versions being compared. The output includes five different pages, each in-
tended to provide a different facet of feedback. This section contains an overview
of these pages. The sample output was generated from an attempted change to
the ERG intended to expand the coverage of extracted complements with a right-
node-raising analysis. This change was also used as a part of the evaluation of
gDelta outlined in Section 5 and is further described there.

4.1 Summary Page

The Summary page is intended to be the first port of call for the grammar engineer
after running gDelta. It provides a high level overview of the impacts that the
grammar changes had over the profiles. The first half of the page is shown in
Figure 4 and the second half is shown in Figure 5. The first half provides an
overview of various grammar profiling diagnostics, a breakdown of the number of
items found in each category of parse change — as well as the number of items from
these categories that could be used for extracting attributes — and a summary of
the attributes with the top increases and decreases in item frequency.

The second half of the Summary page contains separate tables of attributes
found in each category of parse change. Each table has columns containing the
attribute’s change in IDF (referred to as weight), its change in item frequency
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Fig. 4 The first half of the Summary page provides an overview of diagnostic information
pertaining to the impact of changes made to the grammar

(referred to as change), and also the number of items from this category that
the attribute occurred in. This third value is provided in order to determine the
relevance of an attribute to the category, since the changes in item frequency and
IDF are calculated globally across all items. Each column can be interactively
sorted on, allowing the grammar engineer to explore different aspects of how the
parse results were affected. Clicking on an attribute in these tables navigates to
that attribute’s position in the Attributes page described in the next section.

The parse → no parse ranking in Figure 5 illustrates the complementary na-
ture of the different signals presented by the interface. When the Change column
is reverse-sorted, the hd xcmp nom c attribute rises to the top. However, the rela-
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Fig. 5 The second half of the Summary page shows the top-ranked attributes across each of
the different categories of parse change

tively high change in IDF of the hd-hd rnr-nv c attribute, which is involved in the
right node raising analysis, correctly suggests that this attribute could be of more
interest.
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4.2 Attributes Page

The Attributes page aims to provide more comprehensive information pertaining
to how the occurrence of attributes in the parse results was affected by the changes
made to the grammar. It contains a single table listing every attribute extracted
by gDelta from both versions of the grammar. The different columns of the table
contain the following information for each attribute: the size of the change in the
item frequency, the signed change in the item frequency, the IDF-based weighting,
the number of items under the previous grammar containing the attribute, the
number of items under the new grammar containing the attribute and lastly, a
column indicating whether the attribute was present in the source files of only
one or both versions of the grammar. This last column is intended to provide an
indication of when an attribute has been added to or removed from the grammar,
making the cause of an attribute’s frequency changing to or from zero clearer.

All of the columns can be used as sort keys (secondary and tertiary sort keys
etc. are also supported), allowing the grammar engineer to refine the feedback they
receive towards a specific aspect of change that is of interest to them. There is
also a text input box which can be used to filter on the name of attributes. This
is useful for exploiting type-naming conventions that are commonly employed in
DELPH-IN grammars. For instance, in the ERG, filtering on the substring le has
the effect of restricting results to lexical entries. Clicking on an attribute name in
the table navigates to the Items page showing only those items which contain the
attribute in the parse results.

4.3 Clusters Page

The Clusters page provides a visualisation of the clusters produced by gDelta

for each of the different categories of parse change. The clusters are intended to
represent different patterns of effects found in the changes between parse results.
Each cluster is initially presented with only the text from the exemplar item of the
cluster and the cluster’s Silhouette score, which gives an indication of the fit of the
items in the cluster, as described in Section 3.4. More details are available for each
cluster by clicking on the Details button. This exposes a table containing the top
5 attributes found in the exemplar item as well as a table containing all items in
the cluster. Figure 6 shows the two clusters for the parse change category parse →
no parse with the first cluster expanded. For the exemplar attributes, in addition
to presenting the attribute weighting, the cohesion and overlap of each attribute
is also given. The cohesion of an attribute is the percentage of items occurring
in the cluster that contain the attribute, and the overlap is the percentage of
items occurring in all other clusters that contain the attribute. An attribute is
more strongly correlated with a cluster when it has high cohesion and low overlap.
These values provide a means for the grammar engineer to assess the relevance of
the attribute to the cluster. An additional feature of this expanded cluster view
is that hovering over an attribute from the exemplar item causes all items in the
cluster that contain the attribute to be highlighted.
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Fig. 6 The Clusters page: shows clusters generated by gDelta across the different categories
of parse change. Each cluster is intended to represent a locus of change in the parse results

4.4 Items and Errors Pages

The Items page and Errors page contain additional information not directly related
to the attribute weighting and item clustering signals, that augments the feedback
provided by the previous three pages. The Items page contains a table of items
from all profiles along with information pertaining to each item, such as the input
text of the item, the length of the string, the profile the item originated from,
an indication of any changes to the parsability of the item, and the number of
readings yielded by the two versions of the grammar. As well as this table being
sortable, there is also a series of text boxes supporting filtering on fields, as well
as on attributes occurring in each item. All of this allows the grammar engineer to
drill down quickly and identify individual items with specific properties of interest.
For instance, it is trivial to filter on only those items that no longer parse after
the change, and that also contain a specific attribute or set of attributes.

The Errors page is similar in structure to the Items page but lists only those
items which gDelta encountered errors with. These mostly tend to be parse fail-
ures, such as timeouts and system memory limits being reached, but can also arise
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due to gDelta failing to extract attributes from the derivation trees of items which
were successfully parsed.

5 Evaluation

The evaluation of the techniques used in the creation of gDelta is not straightfor-
ward due to the fact that they do not attempt to produce any kind of measurable
judgement of correctness. The output is instead diagnostic in nature, requiring
interpreting by the grammar engineer — an inherently subjective process. Ulti-
mately the best indicator of the success of gDelta is whether grammar engineers
are able to use the tool to more rapidly gain a sense of how the grammar has been
impacted by a change. While we have yet to systematically road-test gDelta in the
context of active development of a grammar, we have performed some qualitative
evaluation of the underlying techniques. This section outlines this evaluation.

This evaluation was an attempt to gauge the utility of gDelta style feedback
by simulating contexts from the grammar development process where gDelta is
intended to be used. We performed this evaluation using modifications to the
ERG which were known to have resulted in problems that were non-trivial to
isolate. Participants were charged with the role of grammar engineer and were
thus required to have some experience working with the ERG. This restriction
unfortunately meant that we only had three participants in the evaluation. This
small group of ersatz grammar engineers were asked to hypothesise about the
nature of the problem resulting from each change, based upon the attribute ranking
and item clustering output from gDelta, along with a short description of what the
change was intended to do. Participants were also asked to describe the reasoning
process they used to come to these conclusions so as to provide us with insight
into how gDelta’s output was being used.

We used three separate changes to the ERG made during its development which
were ultimately not incorporated into the grammar. Each change involved modi-
fications to the grammar that resulted in problems not apparent at the grammar
profiling stage, requiring the analysis of treebanked items before being identified.
For each change, the profiles that the two versions of the grammar were run over
were taken from the WeScience treebank. The different grammar breakages used
were as follows:

Change one: an attempt to reduce the number of analyses being gen-
erated for the noun phrase three thirty. The existing problem was that
one of the analyses produced by the grammar resulted in such phrases
being incorrectly analysed as a determiner followed by a noun. A fix for
this was attempted by the modification of the type reg or temp nom rel

which then resulted in parse failures for valid noun phrases containing
numeric determiners such as two days.
Change two: an attempt to improve the generality of preposition phrase
modification of nominals by changing the type n wh pro lexent. This
failed to parse prepositional phrases modifying wh-pronouns such as in
Who in this town won?

Change three: an attempt to expand the coverage of extracted com-
plements by modifying the type extracted comp phrase to implement a
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right-node-raising analysis for examples like We relied on and hired con-

sultants. The change introduced a regression for items that contained
coordinated phrases headed by prepositions, such as We wrote books for

and with children.

Given that the aim is to identify the problematic effects of these changes, the
participants would ideally be able to identify parts of the grammar where the prob-
lem manifested itself, rather than just the modified components of the grammar,
which the grammar engineer would already be aware of. It should also be noted
that these three changes, which all involve minor changes to a single type, repre-
sent relatively simple grammar modifications. When changing an existing analysis
(or extending the grammar to cover a new one) potentially complex changes could
be made to multiple locations in the grammar. Changes of this kind would offer
a more compelling context for evaluation, as the potential for unexpected flow
on effects that need untangling would be much greater, and would more closely
match the intended use case of gDelta. In future work, we hope to perform a more
thorough evaluation of gDelta in the context of active grammar development.

The results of the grammar breakage experiments were encouraging. Partici-
pants were all able to at least identify the general nature of the problem introduced,
if not the specific location in the grammar. All three participants, for instance, were
able to identify that the problem in the third change involved numeric determin-
ers, with both the attribute ranking and clustering visualisations clearly indicating
that the num det c rule was likely to be associated with the regression.

The descriptions of the reasoning processes used by participants were also
informative. One finding was that the clustering visualisations were considered to
be quite useful. In particular, the top-ranking attributes of the exemplar item for
each cluster were cited as being a useful diagnostic aid, along with their respective
cohesion and overlap values. The attributes were used to determine the nature of
the change being represented by the cluster, while the cohesion and overlap of the
attributes were used to determine whether this was actually an informative cluster
or not. The text of the exemplar item was useful in determining the function of
the attributes found in that item.

6 Obtaining and Using gDelta

gDelta was implemented as a Python program that is run from the command
line. Running gDelta requires Python 2.7, and installation of the SciPy module is
recommended as this will yield faster clustering. Viewing gDelta’s output requires
a standards-compliant web browser. gDelta is freely available for use and can be
found on the DELPH-IN wiki.6

Using gDelta involves the user specifying the two different versions of the
grammar and their respective output profiles which are to be compared. The user
can specify a range of command line flags to run gDelta with different parameters,
such as the number of top parse results from which to extract attributes, and the
maximum number of clusters to be tried in the clustering stage. Once run, gDelta

produces a directory of HTML files containing the different views outlined in
Section 4. This directory contains everything required to view the HTML files,

6 http://moin.delph-in.net/GDeltaTop
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meaning that gDelta output can be browsed offline and does not require access
to the different grammar versions or the parse output. Further instructions for
installation are provided with gDelta’s source code.

7 Future Work

The most important avenue of work we hope to pursue is substantial in situ road-
testing of gDelta in the context of active development of a grammar. This is
needed in order to more concretely assess the purported improvements to the
grammar engineering toolchain we have argued gDelta offers. It would also pro-
vide an opportunity for identifying improvements to the presentation of gDelta’s
output, as well as additional data points that could be incorporated to further
improve the utility of the tool.

One issue in particular that would benefit from further systematic investigation
is the relationship between the utility of the signal provided to grammar engineers,
the size of the test suites and the range of domains represented by the test suites,
and the kind of modification made to the grammar. It is certainly the case that
gDelta will be of limited value when used to investigate changes pertaining to
linguistic phenomena that are underrepresented in the test suites used as input.
Blindly scaling up the range and size of test suites used (if indeed possible) is not
necessarily a desirable solution, as increases to parsing time will add latency to the
feedback, with the possibility for negating any efficiency improvements. It would
be advantageous then to have more of a sense of the scale of input data required
for gDelta to provide helpful results.

Further work on the underlying techniques that drive gDelta could involve
looking at the impact on other data structures produced by the parser. gDelta

currently only makes use of syntactic output generated for successfully parsed
items. Incorporating the semantic analysis returned by the parser would likely be
beneficial as this is an important signal which must also be monitored for quality
assurance, and it can be the case that changes to a grammar only manifest as
effects on the semantic analysis. The techniques outlined in this article could also
be adapted to use the data structures found in the parse chart, opening up the
possibility for partially parsed items — those not receiving a full spanning parse
— to also be used.

In the context of DELPH-IN grammars in particular, a specific kind of flow-on
effect that can manifest itself in the diagnostic information that gDelta provides is
changes in attributes whose corresponding grammar types were not edited by the
grammar engineer but inherit from supertypes which were modified. These kinds of
interactions are distinct in that they can be readily identified by consulting the type
hierarchy of the grammar. Extending gDelta to extract inheritance relationships
between edited types and their descendants would provide an additional signal in
the visualisations, allowing the grammar engineer to identify the origin of these
particular attribute changes. This signal would also be useful in the context of the
item clustering, as it would allow for the identification of clusters corresponding
to this kind of flow on effect.
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8 Conclusion

In this article we presented gDelta, a tool for providing grammar engineers with
improved feedback on the effects of changes made to precision grammars. Exist-
ing tools that assist with the grammar engineering process tend to provide either
immediate but very high-level feedback, or very low-level incremental feedback.
gDelta aims to fill this gap between these extremes in the grammar engineering
toolchain, providing a more nuanced picture of the impact of the change earlier
on in the grammar engineering cycle. It is also the case that existing tools do not
explicitly focus on changes made to a grammar, instead requiring the grammar
engineer to isolate effects caused by the changes manually. gDelta, however, pro-
vides feedback explicitly on changes between two versions of the grammar. We
also outlined two techniques used to drive the visualisations gDelta presents to
the user: an attribute weighting algorithm used to highlight grammar attributes
from the parser output which were significantly impacted by the change, and a
test suite item clustering technique intended to identify related groups of change
across items whose parsability was affected by the change to the grammar.

The qualitative evaluation outlined in Section 5 supports our belief that gDelta

has the potential to improve the efficiency of the grammar engineering process.
During the course of the evaluation we also received positive comments from gram-
mar engineers who helped us with this investigation, indicating that they would
be interested in using gDelta.
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