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Abstract. Japanese kanji recognition experiments are typically nar-
rowly focused, and feature only native speakers as participants. It re-
mains unclear how to apply their results to kanji similarity applications,
especially when learners are much more likely to make similarity-based
confusion errors. We describe an experiment to collect authentic human
similarity judgements from participants of all levels of Japanese pro-
ficiency, from non-speaker to native. The data was used to construct
simple similarity models for kanji based on pixel difference and radical
cosine similarity, in order to work towards genuine confusability data.
The latter model proved the best predictor of human responses.

1 Introduction

In everyday reading tasks, humans distinguish effortlessly between writ-
ten words. This is despite languages often seeming ill-suited to error-
free word recognition, through a combination of inter-character simi-
larity (i.e. the existence of graphically-similar character pairs such as
+: [shi] and + [tsuchi]) and inter-word similarity (i.e. the existence of
orthographically-similar word pairs such as bottle and battle). While na-
tive speakers of a language tend to be oblivious to such similarities, lan-
guage learners are often forced to consciously adapt their mental model
of a language in order to cope with the effects of similarity. Addition-
ally, native speakers of a language may perceive the same character pair
significantly differently to language learners, and there may be radical
differences between language learners at different levels of proficiency or
from different language backgrounds.

This paper is focused on the similarity and confusability of Japanese
kanji characters. This research is novel in that it analyses the effects of
kanji confusability across the full spectrum of Japanese proficiency, from
complete kanji novices to native speakers of the language. Also, unlike
conventional psycholinguistic research on kanji confusability, it draws
on large-scale data to construct and validate computational models of
similarity and confusability. This data set was collected for the purposes
of this research via a web experiment, and consists of a selection of both
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control pairs aimed at targeted phenomena, and also random-selected
character pairs. The research builds on psycholinguistic studies of the
visual recognition of both Chinese hanzi and Japanese kanji.

The paper is structured as follows. We begin by discussing the back-
ground to this research (Section 2), then follow with a description of our
web experiment and its basic results (Section 3). We construct some sim-
ple models of the similarity data (Section 4), then evaluate the models
using the experimental data (Section 5). Finally, we lay out our plans
for future work (Section 6).

2 Background

2.1 Types of similarity

This paper chiefly concerns itself with orthographic similarity of indi-
vidual Japanese characters, that is, graphical similarity in the way the
characters are written. Note that within the scope of this paper, we do not
concern ourselves directly with the question of orthographic similarity of
multi-character words. That is, we focus exclusively on inter-character
similarity and confusability.

Other than simple orthography, character similarity can also be quan-
tised semantically or phonetically; identically-pronounced characters are
termed homophones. In Chinese and Japanese, radicals' are often se-
mantic or phonetic cues of varying reliability in determining character
similarity. When radicals are shared between kanji, more than ortho-
graphic similarity may be shared. If a radical is reliably semantic, then
two kanji sharing it are likely to be semantically related in some way
(e.g. kanji containing the radical H, such as [{§ [mune] “chest” and g
[ude] “arm”, are reliably body parts). If reliably phonetic (e.g. [7], as in
$ [do] “copper” and i [do] “body”), the two kanji will share a Chinese
or on reading, and will hence be homophones. It may thus not be impos-
sible for skilled readers to give purely orthographic similarity judgements
in the presence of shared radicals, since evidence shows these cues are
crucial to reading, as to be discussed in Section 2.2.

2.2 Lexical processing of kanji and hanzi

In considering potential effects to control for, and types of similarity
effects, we draw on the many psycholinguistic studies of kanji or hanzi
recognition, with the basic assumption that human reading processes for
the two scripts are fundamentally similar. It is beyond the scope of this
paper to give these studies full treatment, but we refer the interested
reader to some pertinent results.

There is much support for a form of hierarchical activation model for the
recognition of kanji (Taft and Zhu 1997, Taft, Zhu, and Peng 1999). In

! Here, we use the term radical liberally to refer to any consistent stroke group, rather
than in its narrow sense as either the dictionary index stroke group or the main
semantic stroke group.
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Fig. 1. Example stimulus pair for the similarity experiment. This pair contains a shared radical on
the left.

such a model, firstly strokes are visually activated, which in turn activate
the radicals they form, which then activate entire kanji. Evidence for
such a model includes experiments which showed stroke count effects
(summarized by Taft and Zhu (1997)), and numerous radical effects,
including radical frequency with semantic radical interference (Feldman
and Siok 1997, Feldman and Siok 1999), and homophony effects which
only occurred with shared phonetic radicals (Saito, Inoue, and Nomura
1995, Saito, Masuda, and Kawakami 1998). There is also evidence that
structure may be important for orthographic similarity in general, and
for radical-based effects (Taft and Zhu 1997, Yeh and Li 2002).

3 Similarity experiment

3.1 Experiment outline

A short web-based experiment was run to obtain a set of gold-standard
orthographic similarity judgements. Participants were first asked to state
their first-language background, and level of kanji knowledge, pegged to
one of the levels of either the Japanese Kanji Aptitude Test (H A& ¥
B8 1M E R ER)? or the Japanese Language Proficiency Test (H 725 fg
715 Ex).® Participants were then exposed to pairs of kanji, in a manner
shown in Figure 1, and asked to rate each pair on a five point graded
similarity scale. The number of similarity grades chosen represents a
trade-off between rater agreement, which is highest with only two grades,
and discrimination, which is highest with a large number of grades.
Although participants included both first and second language readers
of Chinese, only Japanese kanji were included in the stimulus. Chinese
hanzi and Japanese hiragana and katakana were not used for stimulus,
in order to avoid potential confounding effects of character variants and
of differing scripts. The pairs were also shuffled for each participant, with
the ordering of kanji within a pair also random, in order to reduce any
effects caused by participants shifting their judgements part-way through
the experiment.

Each participant was exposed to a common set of control pairs, to be
discussed in Section 3.2 below. Further, a remaining 100 random kanji

2 A Japanese government test which is tied to Japanese grade school levels initially,
but culminates at a level well above that expected in high-school graduates.
http://www.kanken.or. jp/

3 The standard general-purpose Japanese aptitude test taken by non-native Japanese
learners of all first-language backgrounds.
http://www. jees.or.jp/jlpt/en/index.htm



Effect type Example Description

Frequency (independent) £ JE  Frequency of occurrence of each kanji individually. Both
kanji in the example pair are high-frequency.

Co-occurrence i# %  Both kanji occur with high frequency with some third
kanji. For example, % [ho] “Act (law)” occurs in %%
[hoaN] “bill (law)”, and % [kaNga(e)] “thought” occurs
in #% [koaN] “plan, idea”.

Homophones i\ 1  Both kanji share a reading. In the example, both 7}
[hiro(i)] “spacious” and f# [haku] “doctor” share a read-
ing [hiro]. For f# this is a name reading.

Stroke overlap K % Both kanji share many similar strokes, although no radi-
cals are shared.

Shared graphemes f# #  Both kanji share one or more graphical elements. These
elements might occur in any position.

Shared structure e Py Both kanji share the same structural break-down into sub-
components, although the sub-components differ.

Stroke count B Pairs comparing and contrasting stroke counts. Both ex-
amples here have a very high stroke count.

Part of speech/function 77 &  Both kanji have a common syntactic function in language.
When added to a verb, it is converted to a noun.

Semantic similarity T J;  Both kanji are semantically similar. In the example, they

are both numbering units.

Fig. 2. Groups of control pairs used, with an example for each. Parts of readings in brackets indicate
okurigana, necessary suffixes before the given kanji forms a word.

pairs were shown where both kanji were within the user’s specified level
of kanji knowledge (where possible), and 100 were shown where one or
both kanji were outside the user’s level of knowledge. This was in order to
determine any effects caused by knowing a kanji’s meaning, its frequency,
its readings, or any other potentially confounding properties.
Web-based experiments are known to provide access to large numbers
of participants and a high degree of voluntariness, at the cost of self-
selection (Reips 2002). Although participants of all language backgrounds
and all levels of kanji knowledge were solicited, the nature of the exper-
iment and the lists advertised to biased participants to be mainly of an
English, Chinese or Japanese first-language background.

3.2 Control pairs

There are many possible influences on orthographic similarity judge-
ments which we hoped to detect in order to determine whether the data
could be taken at face value. A sample pair and a description of each
control effect is given in Figure 2. Since the number of potential effects
considered was quite large, the aim was not statistical significance for
the presence or absence of any effect, but rather guidance in similarity
modelling should any individual effect seem strong. All frequency and
co-occurrence counts were taken from 1990-1999 Nikkei Shinbun corpus
data.

3.3 Results

The experiment had 236 participants, with a dropout rate of 24%. The
participants who did not complete the experiment, and those who gave
no positive responses, were filtered from the data set. The remaining 179
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Fig. 3. Mean responses and rank correlation when broken up into participant groups, measured over
the control set stimulus.

participants are spread across 20 different first languages. Mapping the
responses from “Very different” as 0 to “Very similar” as 4, the mean
response over the whole data set was 1.06, with an average standard
deviation for each stimulus across raters of 0.98.

To measure the inter-rater agreement, we consider the mean rank-correlation
across all pairs of raters. Although the kappa statistic is often used
(Eugenio and Glass 2004), it underestimates agreement over data with
graded responses. The mean rank correlation for all participants over
the control set was strong at 0.60. However, it is still lower than that
for many tasks, suggesting that many raters lack strong intuitions about
what makes one kanji similar to another.

Since many of the first language backgrounds had too few raters to
do significant analysis on, they were reduced to larger groupings of
backgrounds, with the assumption that all alphabetic backgrounds were
equivalent. Firstly, we group first-language speakers of Chinese (CFL)
and Japanese (JFL). Secondly, we divide the remaining participants
from alphabetic backgrounds into second language learners of Japanese
(JSL), second language learners of Chinese (CSL), and the remainder
(non-CJK). Participants who studied both languages were put into their
dominant language based on their comments, or into the JSL group in
borderline cases.*

Figure 3 shows mean responses and agreement data within these partici-
pant groups. This grouping of raters is validated by the marked difference
in mean responses across these groups. The non-CJK group shows high
mean responses, which are then halved for second language learners, and
lowered still for first language speakers. Agreement is higher for the first-
language groups (JFL and CFL) than the second-language groups (JSL
and CSL), which in turn have higher agreement than the non-speakers.
Both of these results together suggest that with increasing experience,
participants were more discerning about what they found to be similar,
and more consistent in their judgements.

4 Many alternative groupings were considered. Here we restrict ourselves to the most
interesting one.



3.4 Evaluating similarity models

Normally, with high levels of agreement, we would distill a gold stan-
dard data-set of similarity judgements, and evaluate any model of kanji
similarity against our gold-standard judgements. Since agreement for
the experiment was not sufficiently high, we instead evaluate a given
model against all rater responses in a given rater group, measuring the
mean rank-correlation between the model and all individual raters in
that group.

We also have reference points to determine good levels of agreement,
by measuring the performance of the mean rating and the median rater
response this way. The mean rating for a stimulus pair is simply the
average response across all raters to that pair. The median rater response
is the response of the best performing rater within each stimulus set (i.e.
the most “agreeable” rater for each ability level), calculated using the
above measure.

4 Similarity models

4.1 Pixel difference model

In Section 2.2, we briefly discussed evidence for stroke level processing
in visual character recognition. Indeed, confusability data for Japanese
learners taken from the logs of the FOKS (Forgiving Online Kanji Search)
error-correcting dictionary interface suggests that stroke-level similarity
is a source of error for Japanese learners. The example # [ki, moto]
“basis” and Z& [bo, haka] “grave/tomb”, was taken from FOKS dictionary
error logs (Bilac, Baldwin, and Tanaka 2003), and is one of the pairs in
our “Stroke overlap” control subgroup (Figure 2).

This example shows that learners mistake very similar looking kanji,
even when there are no shared radicals, if there are sufficient similar
looking strokes between the two kanji. Ideally, with a sufficiently rich
data set for kanji strokes, we could model the stroke similarity directly.
As an approximation, we instead attempt to measure the amount that
strokes overlap by rendering both kanji to an image, and then determine
the pixel difference dpixel between the two rendered kanji. We can easily
move from this distance metric to a similarity measure, as below:

=0
1 . .
dpixel(ka, kp) = EL [Tmage(ka)(i) — Image(ks) (i) (1)
spixel(ka7 kb) =1- dpixel(kay kb) (2)

This calculation is potentially sensitive both to the size of the rendered
images, and the font used for rendering. For our purposes, we considered
an image size of 100 x 100 pixels to be sufficiently detailed, and used this
in all experiments described here. To attempt to attain reasonable font
independence, the same calculation was done using 5 commonly available
fonts, then averaged between them. The fonts used were: Kochi Gothic
(medium gothic), Kochi Mincho (thin mincho), Mikachan (handwriting),



MS Gothic (thick gothic), and MS Mincho (thin mincho). The graphics
program Inkscape® was used to render them non-interactively.

This method of calculating similarity is brittle. Suppose two characters
share a significant number of similar strokes. If the font renders the
characters in such a way that the similar strokes are unaligned or overly
scaled, then they will count as differences rather than similarities in the
calculation. Further robustness could be added by using more sophisti-
cated algorithms for scale and translation invariant image similarity.
Consider the minimum pixel difference of a pair over all possible offsets.
This defines a translation invariant similarity measure. Since the current
method calculates only one alignment, it is an underestimate of the true
translation invariant similarity. Since characters are rendered in equal
size square blocks, and radical frequency is position-dependent, the best
alignment usually features a low offset between images. The current ap-
proximation is thus a close estimate on average, and is considerably less
expensive to compute.

Pixel difference is also likely to underestimate the perceptual salience
that repeated stroke units (i.e. radicals) have, and thus underestimate
radical-level similarity, except where identical radicals are aligned. Nev-
ertheless, we expect it to correlate well with human responses where
stroke-level similarity is present. Pairs scored as highly similar by this
method should thus also be rated as highly similar by human judgements.

4.2 Bag of radicals model

Just as the pixel model aimed to capture similarity effects at the stroke-
level, we now try to capture them at the radical level. Fortunately, at the
radical-level there is an existing data-set which indexes kanji by all of
their contained radicals, the radkfile.® It was designed to aid dictionary
look-up, and serves as a simple method of determining all the unique
radicals used by a kanji.

radkfile
1 =—> {\N+FRAIZLFE}

F > {(N+FALXE}

Fig. 4. Kanji are decomposed into their radicals using the radkfile. Each set of radicals can be
considered a boolean vector over all radicals, where only the radicals which are present are stored.
Note that the character used to represent each single radical is not always identical to that radical.

Using all the potential radicals as dimensions, we can map each kanji
onto a vector space of radicals, giving it a boolean entry in each di-
mension determining whether or not the kanji contains that radical. On

5 http://www.inkscape.org
5 http://ftp.monash.edu.au/pub/nihongo/radkfile.gz



Predictor Example Similarity

Mean rating a. P 0.938
b. & & 0.833
c. k5 0.830
Pixel d. + + 0.878
e A A 0.844
fEE 07Tl
Bag of radicals g. kX % 1.000
h. @41 1.000
i B 0.500

Fig. 5. Examples of high similarity pairs according to mean rating, the pixel model and the bag of
radicals model. The mean rating pairs were taken from the experimental data, whereas the other
pairs were taken from general use kanji.

this vector space, we can calculate the cosine similarity between the two
kanji vectors, to achieve a simple similarity measure based on radical
composition:

_ radicals(k,) e radicals(ks)
sradical (Ko, k) = |radicals(k,)||radicals(ks)] (3)

Comparing high-similarity examples from the different methods (Fig-
ure ?7?), we can immediately see some drawbacks to this model. Ex-
ample (g) shows that the number of each radical present is discarded,
hence ‘X and % are considered identical with this method. Example (h)
shows that position is also discarded, yet there is evidence that radical
effects are position specific (Taft and Zhu 1997, 1999). This model also
ignores similarity due to stroke data, yet the existence of high-similarity
examples such as (d) and (e) which do not share radicals indicates that
stroke overlap can also be a significant contributor to similarity. Larger
structure such as layout may also be important for similarity (Yeh and
Li 2002), and it too is discarded here.

Nonetheless, radicals are clearly significant in the perception of kanji. If
the presence or absence of shared radicals is the main way that individ-
uals perceive similarity, then this model should agree well with human
judgements, whether or not they make use of the additional semantic or
phonetic information these radicals can encode.

5 Model evaluation

The pixel and radical models were evaluated against human judgements
in various participant groups, as shown in Figure 6, and can be com-
pared to the mean rating and median raters. The pixel based similarity
method exhibits weak rank correlation across the board, but increasing
in correlation with increasing kanji knowledge. The radical model how-
ever shows strong rank correlation for all groups but the non-CJK, and
better improvements in the other groups.

These results match our predictions with the pixel-based approach, in
that it performs reasonably, but remains only an approximation. The



Group Mean Median Pizel Radical Band Mean Median Pixel Radical

Non-CJK 0.69 0.55 0.34 0.47 [0,1) 0.69 0.55 0.34 0.47
CSL 0.60 0.65 0.38 0.56 [1,200) 0.62 0.60 0.38 0.53
CFL 0.51 0.62 0.44 0.66 [200,600) 0.64 0.69 0.41 0.61
JSL 0.64 0.70 0.43 0.59 [600,1000) 0.69 0.72 0.46 0.52
JFL 0.56 0.69 0.46 0.68 [1000,2000) 0.56 0.70 0.46 0.65
All 0.65 0.62 0.39 0.54 [2000,...) 0.58 0.73 0.48 0.70

Fig. 6. Rank correlation of pixel and radical mod- Fig. 7. Rank correlation of pixel and radical mod-
els against raters in given participant groups. els against raters in across bands of kanji knowl-
Mean and median raters provided as reference edge. Each band contains raters whose number of
scores. known kanji falls within that band’s range.

radical method’s results however are of a comparable level of agreement
within the CFL and JFL groups to the median rater, a very strong result.
It suggests that native speakers, when asked to assess the similarity of two
characters, make their judgements primarily based either on the radicals
which are shared between the two characters, or on some other measure
which correlates well to identification of shared radicals. Intuitively, this
makes sense. Native speakers have a great knowledge of the radicals, their
meaning and their semantic or phonetic reliability. They also have the
most experience in decomposing kanji into radicals for learning, writing
and dictionary lookup.
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Fig. 8. Histograms of scaled responses across all experimental stimulus pairs, taken from mean
rating, pixel and bag of radical models. Responses were scaled into the range [0, 1].

The radical model still has poor correlation with the non-CJK group, but
this is not an issue for applications, since similarity applications primarily
target either native speakers or learners, who either already have or will
pick up the skill of decomposing characters into radicals. To attempt to
determine when such a skill gets picked up, Figure 7 shows agreement
when raters are instead grouped by the number of kanji they claimed to
know, based on their proficiency level. Aside from the [600, 1000) band,



there are consistent increases in agreement with the radical method as
more kanji are learned, suggesting that the change is gradual, rather than
sudden. Indeed, learners may start by focusing on strokes, only to shift
towards using radicals more as their knowledge of radicals improves.

If we compare the histograms of the responses in Figure 8, we can see
stark differences between human responses and the two models. The rad-
ical model considers the majority of stimuli to be completely dissimilar.
Once it reaches stimulus pairs with at least one shared radical, its re-
sponses are highly quantised. The pixel model in comparison always finds
some similarities and some differences, and exhibits a normal style bell
curve. Human responses lie somewhere in between the pixel and radical
models, featuring a much smaller number of stimuli which are completely
dissimilar, and a shorter tail of high similarity than found with the pixel
model.

6 Applications and future research

6.1 Similarity

We have suggested several potential improvements to our similarity mod-
elling. In particular, a translation invariant version of pixel similarity
could be easily constructed and tested. On the other hand, the data-
set created by Apel and Quint (2004) provides rich stroke data, which
would allow a holistic model combining strokes, radicals and layout into
a unified similarity metric. This should be superior to both the pixel
model, which only approximates stroke-level similarity, and the radical
model, which discards position and stroke information. The data-set cre-
ated here allows fast and simple evaluation of any new similarity models,
which should help foster further experimentation.

Kanji similarity metrics have many potential uses. A similarity or differ-
ence metric defines an orthographic space across kanji, which we can in
turn use in novel ways. Our interest lies in dictionary lookup, and indeed
a user could browse across this space from some seed point to quickly
and intuitively arrive at a target kanji whose pronunciation is unknown.
Particularly dense regions of this space will yield easily confusable pairs
or clusters of high similarity. Presenting these to learners during study
or testing could help these learners to differentiate between similar char-
acters, but also to better structure their mental lexicon. Depending on
the level of similarity the application is concerned with, the high amount
of quantisation of responses may be a disadvantage for thresholding to
only high-similarity responses. This remains one advantage of the pixel
model over the radical model.

6.2 Confusability

From a similarity metric, we can then construct a confusability probabil-
ity across pairs of kanji. Since confusability need not be symmetric, there
may be other effects such as frequency which also play a role. Several
studies of character perception at the word-level have found evidence of



asymmetric interference effects for low frequency words with high fre-
quency neighbours (van Heuven, Dijkstra, and Grainger 1998).
Similarity provides a means to bootstrap collection of confusability data,
useful since authentic confusability data is difficult to find or construct.
The available data mainly comes from controlled experiments in artificial
environments, for example in explorations of illusory conjunctions (Fang
and Wu 1989). Hand analysed logs for the FOKS dictionary detected a
few accidentally corrected orthographic confusability examples, suggest-
ing genuine occurrence of these errors (Bilac, Baldwin, and Tanaka 2004).
The FOKS system also provides a method of turning a basic confusabil-
ity model into a source of genuine confusability data. By adding the
confusability model to the FOKS error model, any errors successfully
corrected using the model will indicate genuine confusion pairs. We thus
can create an informed confusability model, which bootstraps a cycle of
confusability data collection and model validation.

6.3 Perception

There remain many open questions in orthographic similarity effects.
Since the control pairs were not numerous enough to statistically deter-
mine similarity effects from the various effect types, further experimen-
tation in this area is needed. In particular, it unconfirmed as to whether
semantic or phonetic similarity contributed to the similarity judgements
analysed here. It could be tested by comparing pairs that share the same
number of radicals, where the shared radicals for one pair were reliable
semantic or phonetic cues, but the shared radicals for the other pair
were not. We have discussed positional specificity of shared radicals as
shown by Taft and Zhu (1997, 1999); the same specificity may also occur
in radical-based similarity effects, and should be further investigated, as
should stroke level effects.

7 Conclusion

We carried out an experiment seeking graphical similarity judgements,
intending to form a similarity dataset to use for modelling. Since agree-
ment within raters was moderate, we instead used the human judgements
directly as our dataset, evaluating models against it. Two models were
proposed, a stroke-based model and a radical based model. The stroke-
based model was approximated using pixel differencing, rather than cre-
ated directly. The pixel model showed medium agreement, but the radical
model showed agreement as strong as the best individual rater for native
speakers.

Although the radical-based model’s performance may be adequate for
some applications, there is much promise for a holistic model taking
into account stroke, radical and positional effects. The data-set created
here provides a means for quick and effective evaluation of new similarity
models for kanji, thus allowing much experimentation. As well as seeding
new dictionary lookup methods, the similarity models considered provide



a basis for confusability models, which are themselves useful for error-
correcting lookup, and in turn generating confusion data. Such confusion
data, along with the similarity judgments collected here, will provide
important evidence for understanding the perceptual process for kanji.
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