
Baldwin, Timothy and Manuel Paul Anil Kumar Joseph (2009) Restoring Punctuation and
Casing in English Text, In Proceedings of the 22nd Australian Joint Conference on

Artificial Intelligence (AI09), Melbourne, Australia, pp. 547-556.

Restoring Punctuation and Casing in English
Text

Timothy Baldwin1,2 and Manuel Paul Anil Kumar Joseph1

1 Department of Computer Science and Software Engineering
University of Melbourne, VIC 3010, Australia

2 NICTA Victoria Laboratories
University of Melbourne, VIC 3010, Australia

tb@ldwin.net, mjoseph@students.csse.unimelb.edu.au

Abstract. This paper explores the use of machine learning techniques
to restore punctuation and case in English text, as part of which it in-
vestigates the co-dependence of case information and punctuation. We
achieve an overall F-score of .619 for the task using a variety of lexical
and contextual features, and iterative retagging.

1 Introduction

While digitised text data is growing exponentially in volume, the majority is of
low quality. Such text is often produced automatically (e.g. via speech recognition
or optical character recognition [OCR]) or in a hurry (e.g. instant messaging
or web user forum data), and hence contains noise. Normalisation of case and
punctuation in such text can greatly improve its consistency and accessibility to
natural language processing methods [10].

This research is focused on the restoration of case and punctuation. To illus-
trate the task, given the following input text:

(1) ... club course near mount fuji marnie mcguire of new zealand winner of
the mitsukoshi cup ladies in april had a ...

we would hope to restore it to:

(1’) ... club course near Mount Fuji. Marnie McGuire of New Zealand, winner
of the Mitsukoshi Cup Ladies in April, had a ...

There are some notable effects taking place, such as mcguire, where the first and
third letters are capitalised, and april , which is both capitalised and has a comma
attached to it. While cup and ladies would not standardly be capitalised, they
require capitalisation in this context because of their occurrence in the proper
name Mitsukoshi Cup Ladies. Similarly, words such as prime and minister , and
new and york , need to be capitalised primarily when they co-occur. The above
example illustrates the complexities involved in the task of case and punctuation
restoration.



This research has applications over the output of speech dictation systems
and automatic speech recognition (ASR) systems, which tend to have difficulties
predicting where to insert punctuation and sentence boundaries, and also over
noisy web data (e.g. as found in web user forums), where case and punctuation
are often haphazard [2].

In the process of exploring the complexity of this task and proposing a
restoration method, we have developed a benchmark dataset for research on
case restoration and punctuation restoration.

2 Related Work

Case and punctuation restoration is a relatively unexplored field. cyberpunc
[2] is a lightweight method for automatic insertion of intra-sentence punctuation
into text. It uses a simple hidden Markov model with trigram probabilities to
model the comma restoration problem, restoring the punctuation of 54% of the
sentences correctly. [15] tackle the problem of comma restoration using syntactic
information, and improve on this to achieve an accuracy of 58%. In both of these
cases, sentence boundaries are assumed to be given. In our case, we assume
no punctuation whatsoever, including sentence boundaries, and hence direct
comparison with our work is not possible.

The above-mentioned methods deal with punctuation restoration at the sen-
tence level, i.e., the input to both systems is a single sentence. For instance, the
following input instances:

(2) the golf tournament was at the country club course near mount fuji
(3) marnie mcguire of new zealand winner of the mitsukoshi cup ladies in april

had a 72 for 212

would be converted to:

(2’) The golf tournament was at the country club course near Mount Fuji.
(3’) Marnie Mcguire of New Zealand, winner of the Mitsukoshi Cup Ladies in

April, had a 72 for 212.

This simplifies the task significantly, as the sentence boundaries are explicitly
specified. This is not the case in our system, where the input is a stream of words,
thus requiring the system to detect sentence boundaries (explicitly or implicitly).
Hence it is not possible to apply these systems over our data or compare the
results directly.

In ASR systems, researchers have made use of prosodic information, dis-
fluencies and overlapping speech to predict punctuation, which they have then
supplemented with language models [15].

[10] look into the task of truecasing, or case restoration of text. They propose
a language model-based truecaser, which achieves a word accuracy of around 98%
on news articles. The high accuracy reported here can be used as an indication
that the case restoration task is simpler in comparison to punctuation restora-
tion. Note that a direct comparison of the accuracy of punctuation methods



Table 1. Size of the training, development and test datasets

Dataset Number of tokens

Training 66371
Development 65904

Test 64072

mentioned above and the truecasing task is misleading: the accuracy reported
for the punctuation tasks is at the sentence level, whereas, in case of the true-
casing task it is at the word level.

3 Task Description

To generate our dataset, we randomly selected 100 articles each (roughly 65K
words) from the AP Newswire (APW) and New York Times (NYT) sections of
the English Gigaword Corpus, as training, development and test data. We then
tokenised the data, before stripping off all punctuation and converting all the text
to lower case. The only punctuation that was left in the text was hyphenation,
apostrophes and in-word full stops (e.g. U.S and trade-off ).1 Each of these Table
1 shows the number of words in each of the datasets.

Each token is treated as a single instance and annotated with a class indicat-
ing the punctuation and case restoration that needs to take place, in the form of a
capitalisation class, indicating the character indices requiring capitalisation, and
a list of zero or more punctuation labels, each representing a punctuation mark
to be appended to the end of the word. For example, cap1+fullstop+comma
applied to corp would restore it to Corp.,. The class allcaps is used to repre-
sent that all letters in the word need to be converted to uppercase, irrespective
of the character length of the word.

Unsurprisingly, the distribution of classes in the data is heavily skewed as de-
tailed in Table 2, with the vast majority of instances belonging to the nochange
class.

In addition to the token instances, we fashioned a set of base features for
each word as part of the data release. The base features consist of:

1. the lemma of the word, based on morph [13];
2. Penn part-of-speech (POS) tags [12] based on fnTBL 1.0 [14];
3. CLAWS7 POS tags [16] based on the RASP tagger [4]; and
4. CoNLL-style chunk tags based on fnTBL 1.0.

1 The decision to leave in-word full stops and hyphens in the data is potentially
controversial. In future work, we intend to explore their impact on classification
performance by experimenting with data which contains literally no punctuation
information.



Table 2. The top-8 classes in the training data, with a description of the corresponding
change to the token

Class Description % Example

nochange no change 75.8% really → really
cap1 capitalise first letter 12.4% thursday → Thursday
nochange+comma append comma 4.1% years → years,
nochange+fullstop append full stop 3.8% settlement → settlement.
cap1+comma capitalise first letter and ap-

pend comma
1.7% thursday → Thursday,

cap1+fullstop capitalise first letter and ap-
pend full stop

0.9% thursday → Thursday.

allcaps capitalise all letters 0.7% tv → TV
allcaps+fullstop capitalise all letters and ap-

pend a full stop
0.2% u.s → U.S.

We generate all of these features over the case-less, punctuation-less text, mean-
ing that we don’t have access to sentence boundaries in our data. For both POS
taggers and the full text chunker [1], therefore, we process 5-token sequences,
generated by running a sliding window over the text. For a given token, there-
fore, 5 separate tags are generated for each preprocessor, at 5 discrete positions
in the sliding window; all 5 tags are included as features.2 The total number of
base features is thus 16 per instance.

This dataset is available for download at http://www.csse.unimelb.edu.
au/research/lt/resources/casepunct/.

4 Feature Engineering

While the data release includes a rich array of features, we chose to optimise
classifier performance via feature engineering, modifying the feature description
in various ways. In all cases, feature engineering was performed over the devel-
opment data, holding out the test data for final evaluation.

4.1 Lemma and POS/chunk tag normalisation

First, we converted all 4-digit numbers (most commonly years, e.g. 2008 ) into a
single lemma, and all other sequences of all digits into a second number lemma.
Similarly, we converted all month and day of the week references into separate
lemmas. The primary reason for this was the high frequency of date strings such
as 14 Jan, 2007 which require comma restoration; in this case, the string would
be lemmatised into the three tokens non-4digit-num-ersatz month-ersatz 4digit-
num-ersatz , respectively. In the case of these filters successfully matching with
2 For tokens at the very start or end of a dataset which do not feature in all 5 positions,

we populate any missing features with the value .



the wordform, the resultant lemma substituted for that in the original dataset.
For example, the lemma for 2007 is 2007 in the original dataset, but this would
be replaced with 4digit-num-ersatz . As such, this processing doesn’t generate
any new features, but simply modifies the existing lemma feature column.

Rather than include all 5 POS and chunk tags for a given token, we select the
POS and chunk tags which are generated when the token is at the left extremity
in the 5-word sliding window. That is, we remove all but the leftmost POS and
chunk tags from the features provided in the dataset. Surprisingly, this simple
strategy of taking the first out of the 5 POS and chunk tags provided in the
dataset was superior to a range of more motivated disambiguation strategies
trialled, and also superior to preserving all 5 tags.

4.2 Lexical features

We capture hyphens, apostrophes and in-word full stops by way of a vector of
three Boolean lexical features per instance.

In an attempt to capture the large number of acronyms (e.g. dvd) and proper
nouns in the data, we fashioned a list of acronyms from GCIDE and WordNet
2.1 [7]. We used the British National Corpus [5] to determine which capitalisa-
tion form had the highest frequency for a given lemma. For lemmas where the
word form with the highest prior involves capitalisation, we encode the capital-
isation schema (e.g. allcaps+fullstop for u.s.a) via a fixed set of Boolean
features, one each for the different schemas. We additionally encode the condi-
tional probabilities for a given lemma being lower case, all caps, having its first
letter capitalised, or having the first and third letters capitalised (e.g. mcarthur);
these were discretised into three values using the unsupervised equal frequency
algorithm algorithm as implemented in nltk [3].

4.3 Context information

Punctuation and capitalisation are very dependent on context. For example,
prime is most readily capitalised when to the immediate left of minister . To
capture context, we include the lemma, Penn POS tag, CLAWS7 POS tag and
chunk tag (disambiguated as described in Section 4.1) for the immediately pre-
ceding and proceeding words, for each target word. That is, we copy across a
sub-vector from the preceding and proceeding words. We also include: (1) bi-
grams of the target word and proceeding word, in the form of each of word,
Penn POS tag and CLAWS7 POS tag bigrams; and (2) trigrams of the Penn
and CLAWS7 POS tags of the preceding, target and proceeding words; and (3)
trigrams of the CLAWS7 tags of the target word and two preceding words.

5 Classifier Architecture

We experimented with a range of classifier architectures, decomposing the task
into different sub-tasks and combining the results differently.



5.1 Class decomposition

We first experimented with a 3-way class decomposition, performing dedicated
classification for each of: (1) acronym detection, (2) case restoration, and (3)
punctuation restoration. We then take the predictions of the three classifiers
for a given instance, and combine them into a fully-specified class. Note that
acronym detection cross-cuts both punctuation and case restoration, but is a
well-defined standalone sub-task.

For the acronym detection task, we focus exclusively on the three classes
of cap1+fullstop, allcaps+fullstop and nochange (the three most fre-
quent classes). This was achieved through simple class translation over the train-
ing/development instances, by stripping off any extra classes from the original
data to form a modified class set.

To perform case restoration, we again strip all but the case information from
the class labels. There will inevitably be some overlap with the acronym clas-
sifier, so we exclude allcaps+fullstop instances from classification with this
classifier (i.e. transform all allcaps+fullstop instances into nochange in-
stances).

Finally, for the punctuation restoration sub-task, we strip off any case infor-
mation from class labels, leaving only the punctuation-related labels.

To combine the predictions for the classifiers associated with each of the three
sub-tasks, we tested two approaches: (1) using heuristics to directly combine the
class labels of the three classifiers, and (2) performing meta-classification across
the classifier outputs. In the heuristic approach, the class label produced by the
abbreviation sub-task overrides the predictions of the other two classifiers if both
predict that case restoration is necessary. For example, if allcaps+fullstop
was predicted by the abbreviation classifier and cap1 was predicted by the case
restoration classifier, we would accept allcaps+fullstop as the final case
prediction. If the punctuation classifier then predicted comma, the final class
would be allcaps+fullstop+comma. If, on the other hand, the abbreviation
classifier predicted nochange, the prediction from the case restoration classifier
would be accepted.

In the meta-classification approach, the three classifiers are run over both
the test and development datasets, and the outputs over the development data
are used to train a meta-classifier. The outputs from the three classifiers for each
test instance are fed into the meta-classifier to generate the final class.

5.2 Retagging

As stated in Section 3, the base features were generated using a sliding window
approach (without case or punctuation information). We expect the performance
of the preprocessors to improve with correct case and punctuation information,
and sentence-tokenised inputs. We thus experiment with a feedback mechanism,
where we iteratively: (a) classify the instances, and restore the (training, devel-
opment and test) text on the basis of the predicted classes; and (b) sentence
tokenise, re-tag, lemmatise and chunk the data, and then feed the updated tags



Table 3. Classification results (italicised numbers indicate gold-standard data used;
bold numbers are the best achieved without gold-standard data)

Classifier Description Accuracy Precision Recall F-score

Baseline (IB1) .784 .516 .301 .381

Base features, with only first tag .790 .571 .282 .378
+ extra lexical features .837 .637 .534 .581
+ all extra features .839 .620 .604 .611

Heuristic combination .834 .596 .612 .604
Meta-classifier .840 .639 .554 .594

Iterative retagging .840 .615 .622 .619

Retagging (based on original text) .885 .715 .766 .740
With gold-standard punct labels .926 .887 .793 .837
With gold-standard case/abbrev labels .912 .793 .813 .803

Table 4. Best-10 performing classes for the iterative retagger (ranked based on F-score)

Class Accuracy Precision Recall F-score

allcaps+fullstop .657 .787 .799 .793
allcaps .561 .853 .621 .719

cap1 .523 .719 .658 .687
cap1+fullstop .312 .607 .391 .476
cap1+comma .276 .523 .369 .433

nochange+fullstop .251 .450 .361 .401
nochange+comma .191 .351 .294 .320

cap1-3 .143 .750 .150 .250
cap1+fullstop+comma .100 .667 .105 .182

cap1+colon .082 1.000 .082 .151

back into the data as new feature values. As our sentence tokeniser, we used the
nltk implementation of punkt [9]; the lemma, POS and chunk tags are gener-
ated in the same way as mentioned in Section 3. We stop the iterative process
when the relative change in tags from one iteration to the next becomes suffi-
ciently small (gauged as a proportion of test instances which undergo change in
their predicted class).

6 Results

All evaluation was carried out using token-level accuracy, precision, recall and
F-score (β = 1).

As our baseline classifier, we ran the TiMBL implementation of the IB1
learner [6] over the base set of features (which actually outperformed an SVM
learner over the same features). All other classifiers are based a multi-class sup-



port vector machine, implemented as part of the BSVM toolkit [8].3 We used a
linear kernel in all experiments described in this paper, because we found that it
performed better than the Radial Basis Function (RBF) and polynomial kernels.

The results for all the experiments are presented in Table 3.
First, we can see that the strategy of using only the first POS and chunk tag

improves accuracy and precision, but actually leads to a drop in recall and F-
score over the baseline. The addition of lexical features (Section 4.2) appreciably
improved results in all cases, and had the greatest impact of any one of the feature
sets described in Section 4. The incorporation of all the extra features brought
precision down slightly, but improved recall and led to an overall improvement
in F-score.

Using the same set of expanded features with the 3-way task decomposition
and either direct heuristic combination or meta-classification, actually led to a
slight drop in F-score in both cases relative to the monolithic classification strat-
egy. The meta-classifier generated the highest precision and equal-best accuracy
of all the classifiers using only automatically-generated features, but precision
dropped considerably.

The retagging method, in combination with the monolithic classifier archi-
tecture, resulted in the best accuracy, recall and F-score of all automatic meth-
ods tried. The indicated F-score is based on three iterations, as the number of
changes dropped exponentially across iterations to only 335 at this point. Error
analysis of this final classifier revealed that the performance over case restoration
actually deteriorated (to below-baseline levels for the class allcaps+fullstop,
e.g.), but the performance over punctuation restoration picks up considerably.
Results for the top-10 classes (based on F-score4) are presented in Table 4.

To investigate the potential for the retagging method to improve results, we
separately ran the lemmatiser, taggers and chunker over the original text (with
correct case and punctuation information, and sentence tokenisation), and re-ran
the classifier. This caused the F-score to jump up to .740, suggesting that this
approach could lead to much greater improvement given higher performance of
the base classifier.

Finally, we investigated the co-dependency of the case and punctuation restora-
tion tasks in the context of the meta-classification approach, by combining gold-
standard case labels with automatically-generated punctuation labels, and vice
versa. This resulted in the final two lines of Table 3, which clearly show that if
we can get one of the two tasks correct, the other becomes considerably easier.

7 Future Work

Our research focussed on a small sub-set of punctuation. Punctuation such as
question marks and colons was not explored here, and features targeting these
could be considered to further improve the performance of the classifier.

3 http://mloss.org/software/view/62/
4 Excluding the nochange class.



Another area for future investigation is instance selection [11]. The distri-
bution of instances over the set of classes is skewed heavily in favour of the
nochange class. Instance filtering could have helped in alleviating this bias,
forcing the classifier to look at the other classes. This could help especially when
looking at the sub-tasks, where the number of nochange instances increased
because of the stripping off of the case or punctuation class information.

The original motivation for this research was in applications such as ASR and
OCR, but all of our results are based on the artificially-generated dataset, which
lacks case and punctuation but is otherwise clean. We are keen to investigate
the applicability of the proposed method to noisy outputs from ASR and OCR
in more realistic settings.

8 Conclusion

We have explored the task of case and punctuation restoration over English text.
First, we established a benchmark dataset for the task, complete with a base fea-
ture set, and then we proposed an expanded feature set, and a range of classifier
architectures based on decomposition of the overall task. The best results were
achieved with the expanded feature set, a monolithic classifier architecture and
iterative retagging of the text.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of Excellence program.

References

1. S. P. Abney. Parsing by chunks. In R. C. Berwick, S. P. Abney, and C. Tenny,
editors, Principle-Based Parsing: Computation and Psycholinguistics, pages 257–
278. Kluwer, Dordrecht, Netherlands, 1991.

2. D. Beeferman, A. Berger, and J. Lafferty. Cyberpunc: A lightweight punctuation
annotation system for speech. In Proceedings of 1998 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP’98), Seattle, USA,
1998.

3. S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python —
Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Sebastopol,
USA, 2009.

4. E. Briscoe, J. Carroll, and R. Watson. The second release of the RASP system.
In Proceedings of the COLING/ACL 2006 Interactive Poster System, pages 77–80,
Sydney, Australia, 2006.

5. L. Burnard. User Reference Guide for the British National Corpus. Technical
report, Oxford University Computing Services, 2000.



6. W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den Bosch. TiMBL: Tilburg
Memory Based Learner, version 5.1, Reference Guide. ILK Technical Report 04-02,
2004.

7. C. Fellbaum. Wordnet: An Electronic Lexical Database. MIT Press, Cambridge,
USA, 1998.

8. C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector
classification. Technical report, Department of Computer Science National Taiwan
University, 2008.

9. T. Kiss and J. Strunk. Unsupervised multilingual sentence boundary detection.
Computational Linguistics, 32(4):485–525, 2006.

10. L. V. Lita, A. Ittycheriah, S. Roukos, and N. Kambhatla. tRuEcasIng. In Proceed-
ings of the 41st Annual Meeting of the Association for Computational Linguistics,
pages 152–159, Sapporo, Japan, 2003.

11. H. Liu and H. Motoda. Feature Extraction, Construction and Selection: A Data
Mining Perspective. Kluwer Academic Publishers, Dordrecht, Netherlands, 1988.

12. M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated
corpus of English: the Penn treebank. Computational Linguistics, 19(2):313–330,
1993.

13. G. Minnen, J. Carroll, and D. Pearce. Applied morphological processing of English.
Natural Language Engineering, 7(3):207–223, 2001.

14. G. Ngai and R. Florian. Transformation-based learning in the fast lane. In Proceed-
ings of the 2nd Annual Meeting of the North American Chapter of Association for
Computational Linguistics (NAACL2001), pages 40–47, Pittsburgh, USA, 2001.

15. S. M. Shieber and X. Tao. Comma restoration using constituency information. In
Proceedings of the 3rd International Conference on Human Language Technology
Research and 4th Annual Meeting of the NAACL (HLT-NAACL 2003), pages 142–
148, Edmonton, Canada, 2003.

16. M. Wynne. A post-editor’s guide to CLAWS7 tagging. UCREL University of
Lancaster, Lancaster, England, 1996.


